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Streszczenie 
 

Włókna światłowodowe, o coraz bardziej wyszukanych parametrach i geometriach, wciąż znajdują 
wiele nowych zastosowań praktycznych w nauce i technice, mając przy tym istotny wkład do 
rozwoju współczesnej telekomunikacji. Przykładowo, najnowsze badania prowadzone na 
właściwościami kryształów fotonicznych pozwoliły na wprowadzenie nowatorskich idei i pomysłów 
do prac z zakresu optyki światłowodowej. Należy przy tym zwrócić uwagę na podjętą w ostatnich 
latach tematykę badań nadświatłowodami fotonicznymi (ang. photonic crystal fibers, PCF), w tym w 
szczególności nad takimi, dla których możliwe jest uzyskanie dynamicznej zmiany ich właściwości 
optycznych. Na przykład, przestrajanie parametrów propagacyjnych może być stosunkowo łatwo 
uzyskane dzięki zastosowaniu ciekłego kryształu, jako materiału wypełniającego otwory 
światłowodu fotonicznego. Wytworzone w ten sposób struktury światłowodowe, określane mianem 
fotonicznych światłowodów ciekłokrystalicznych (ang. photonic liquid crystal fiber, PLCF), spotykają 
się ze znacznym zainteresowaniem ze strony środowiska naukowego. Ich unikatowe właściwości 
wynikają przy tym nie tylko ze specyfiki zastosowanego elementu bazowego, jakim jest światłowód 
fotoniczny, ale również z zastosowania ciekłych kryształów, których właściwości optyczne mogą być 
zmieniane przez czynniki zewnętrzne takie jak temperatura, rozciąganie, ciśnienie, pole elektryczne 
i/lub magnetyczne. Niestety konieczność uwzględnienia orientacji molekuł ciekłego kryształu oraz 
jego niejednorodności wewnątrz objętości rozważanego światłowodu fotonicznego wprowadza 
dodatkowe wyzwanie w przypadku opisu teoretycznego jak i badań eksperymentalnych nad 
ciekłokrystalicznymi światłowodami fotonicznymi. 
Najbardziej znanym i najprostszym modelem służącym do analizy i teoretycznej charakteryzacji 
światłowodów jest opis analityczny uzyskany dla przypadku pola skalarnego i przy założeniu 
polaryzacji liniowej. Model ten pozwala na dokładny opis propagacji modów światłowodowych dla 
większości typowych światłowodów telekomunikacyjnych, niestety zawodzi on w przypadku bardziej 
skomplikowanych i zaawansowanych struktur. W takich przypadkach konieczne okazuje się 
zastosowanie zapisu wektorowego pola elektromagnetycznego fali świetlnej. Dodatkowo, w 
ogólnym przypadku jest bardzo trudne lub wręcz niemożliwe uzyskanie rozwiązań analitycznych dla 
propagacji światła w kryształach fotonicznych. Na szczęście, dzięki stałemu rozwojowi w dziedzinie 
informatyki i fizyki komputerowej, zaproponowanych zostało wiele schematów numerycznych, które 
mogłyby zostać zastosowane do charakteryzacji światłowodów mikrostrukturalnych. 
Niniejsza praca dotyczy w szczególności opracowania skutecznych metod numerycznych służących 
do opisu propagacji światła w ciekłokrystalicznych światłowodach fotonicznych przy wykorzystaniu 
dostępnych zasobów sprzętowych. W szczególności, sformułowane zostały opisy teoretyczne 
zarówno dla pola skalarnego jak i wektorowego, a następnie odpowiednie schematy opisu 
propagacji modów światłowodowych zostały zaimplementowane numerycznie przy zastosowaniu 
metod różnic skończonych. W porównaniu do wartości uzyskanych analitycznie dla światłowodu 
skokowego o dużym kontraście współczynników załamania, błąd względny wprowadzany przez 
zastosowanie pola skalarnego jest niemalże 100 razy  większy niż ten uzyskany dla opisu 
wektorowego. Zastosowanie tego ostatniego pozwala na uzyskanie błędu względnego ~3*10-6 dla 
efektywnego współczynnika załamania  modu podstawowego w światłowodzie skokowym o dużym 
kontraście współczynników załamania oraz ~4*10-4 w światłowodzie fotonicznym typu Holey-Fiber 
(w przypadku propagacji na zasadzie zmodyfikowanego całkowitego wewnętrznego odbicia). W 
przypadku symulacji numerycznych przeprowadzonych dla ciekłokrystalicznych światłowodów 
fotonicznych błąd ten został oszacowany na poziomie poniżej 10-3 i co więcej przeprowadzone 
symulacje potwierdziły istnienie przerw fotonicznych w widmie transmisyjnym (co zostało 
zaobserwowane również eksperymentalnie). 
Mając na uwadze uzyskane wyniki, przewiduje się dalszy rozwój tematyki poruszonej w niniejszej 
pracy, w tym badania eksperymentalne jak i przeprowadzenie dodatkowych symulacji numerycznych, 
w celu potwierdzenia właściwego działania i optymalizacji napisanych skryptów oraz dokładności 
przeprowadzanych obliczeń.  W szczególności zaproponowany i opracowany pełno-wektorowy 
schemat do wyznaczania modów światłowodowych przy zastosowaniu metody różnic skończonych 
w dziedzinie częstotliwości może być z łatwością wykorzystany przy rozważaniu anizotropii ciekłego 
kryształu przy dowolnym obrocie molekuł w płaszczyźnie poprzecznej w stosunku do kierunku 
propagacji światła (osi światłowodu).  
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Summary 
 

Optical fibers have found vast applications in science and technology, and contributed largely to 

the infrastructure of telecommunications. Studies on properties of photonic crystals have 

infused new ideas and visions into the field of fiber optics. Recently, photonic crystal fibers 

(PCFs) with highly tunable optical properties achieved by their infiltration with liquid crystals 

(LCs) have gained significant amount of scientific attention. 

These particular fiber structures are often referred to as photonic liquid crystal fibers (PLCFs). 

Their unique characteristics not only result from specific properties of the structure of host PCFs, 

but also from the highly tunable optical properties of LCs. Such tunability can be achieved by 

applying external factors like temperature, strain, pressure, electric or/and magnetic fields. 

However, owing to their quasi-crystalline, non-uniform nature, LCs introduce further challenges 

in theoretical, numerical and experimental characterization of PLCFs. 

Conventionally, the most well-known and the simplest model for optical fiber characterization is 

the analytical scalar-field formulation with linearly polarized field approximation. It provides 

fairly straightforward and accurate characterization of practical telecommunication fibers, but 

fails for more complicated fiber geometries (e.g. with high contrast on refractive index). In such 

case the vector-field formulation is required. Moreover, when photonic crystal structures are 

incorporated, analytical solutions are difficult to obtain, if not impossible. Thanks to the 

advance of computer science and computational physics, various types of numerical schemes 

have been proposed to characterize optical fibers with micro-structures. 

In this thesis, we focus on numerical methods for the characterization of PLCFs with accessible 

computational effort. More specifically, both the scalar-field scheme and the vector-field 

scheme are formulated theoretically and implemented numerically with finite difference 

methods (FDFD/FDM). Compared to analytical values, the relative error introduced in the 

scalar-field formulation is almost 100 times higher than the vector-field formulation for a high 

index-contrast step-index fiber (HC-SIF). When vector-field FDFD is applied, relative error of 

3ppm is observed for effective refractive index of the fundamental mode in HC-SIF and 413ppm 

in a holey fiber (HoF) with index-guiding geometry. The <0.1% relative errors qualify for 

simulations on PLCFs. However, spurious results appear to be a concern when photonic 

bandgap (PBG) guiding fiber geometries are considered, as the eigenvalue range of the 

simulation is very limited under some conditions. Simulations show the wavelength selectivity 

in transmission spectrum, which is correspondingly observed in experiments. Future 

examinations on both the experiment and the numerical schemes are required to justify the 

simulations and to analyze the discrepancy. In particular, a vector-field FDFD scheme developed 

and implemented here can easily take into consideration the anisotropy of LC with arbitrary 

rotation in the transverse plane with respect to the propagation axis of the fiber.  
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1 Introduction 
 

 

1.1 Photonic Liquid Crystal Fiber (PLCF) 

 

Photonic crystals (PCs) are a new type of optical materials that has unusual optical 

properties and corresponding unprecedented applications. As an analogy to the atomic 

bandgap concept for electronic materials, the theory of photonic bandgap (PBG) has been 

developed for the optical materials. 

Within a photonic bandgap, there is no available light modes (photons) for some 

frequency range and therefore the propagation of light is prohibited. A defect state within 

the photonic bandgap traps photons with certain combinations of optical frequency and 

wave vector. Confinement of light with such structure can therefore lead to the formation 

of optical cavities and waveguides, which correspond to three-dimensional (3D) and 

two-dimensional (2D) photonic crystal structures, respectively. 

Photonic crystal fibers (PCFs) are the special class of 2D photonic crystal structures with 

cylindrical symmetry, extended homogeneously over the third dimension -- the axis of 

both propagation and symmetry. In addition to PBG guiding, PCFs can also guide light with 

the index-guiding mechanism, as conventional optical fibers do. General cross section 

(fiber structure or geometry) of PCF can be divided into two regions, the circular core and 

the annular cladding. The cladding generally consists of periodic air holes, forming 

photonic lattices, while the core region can either consist of solid materials as in 

conventional fibers, or remain hollow in some designs with PBG guiding. It is important to 

note that PCF geometries are highly flexible and give vast freedom in engineering and 

tailoring towards desired optical properties. 

Recently, PCFs with highly tunable optical properties that can be relatively easily achieved 

by their infiltration with liquid crystals (LCs) have gained significant amount of the 

scientific attention. They are often referred to as photonic liquid crystal fibers (PLCFs) 

(Wolinski et al., 2006), liquid crystal-photonic crystal fibers (LC-PCFs) (Du et al., 2004), or 

liquid crystal-photonic bandgap fibers (Larsen et al., 2003). Their unique characteristics 

depend not only on the applied geometry of the PCF host, but also on the highly tunable 

optical properties of LC. The latter can be achieved by applying external factors like 

temperature, strain, pressure, electric or/and magnetic fields. 
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1.2 Motivation 

 

Simple characterization of practical optical fibers (i.e., step-index geometries with small 

index-contrast) can be achieved by linearly polarized (LP) approximation under scalar-field 

formulation (Gloge, 1971). It enables analytical analysis of the fiber modes in which the 

vector fields are decoupled into individual scalar fields. Therefore, the resultant field 

distributions are called linearly polarized modes, LPlm, where the subscripts l and m 

denote the order of the mode. 

Although it is simple and accurate for typical telecommunication fibers, the use of the LP 

approximation under scalar-field formulation is however very limited. For more general 

fiber geometries, it is often not possible to find analytical solutions. Furthermore, even 

with a simple step-index geometry, when the index-contrast is large, scalar-field LP 

formulation fails to give accurate results because the coupling between vector field 

components are no longer negligible. 

In order to characterize general fiber geometries, vector field formulation is required. 

Solving analytically the Maxwell equations with vector-field formulation is complicated, if 

not impossible, especially when complex refractive index profiles are also introduced. An 

alternative is to solve the Maxwell equations numerically. Numerical analysis nowadays 

has become more and more realistic thanks to powerful computers, whose limits are still 

being pushed further and further. They are an useful tool in modern science, and play an 

important role in modeling physical problems. As the Chinese saying goes, “to do the job 

well, one must first sharpen his tools”, the study of PLCFs can also be facilitated by 

introducing and refining numerical methods. 

To sum up, the interesting characteristics of PLCFs are worth paying attention. However, it 

is difficult, if not impossible, to study PLCFs analytically. Not only the vector nature of light 

has to be taken into account for accurate analysis, but also the material anisotropy and 

the finite order of LC. Moreover, when LC molecules are infiltrated into a PCF host, 

resulting in a PLCF, the boundary interactions are also crucial for accurate analysis. It is 

therefore essential to progress the study of PLCFs with the advance of computer science. 

 

 

1.3 Objectives 

 

The main objective of the thesis is to construct computationally accessible and efficient 

numerical schemes that are capable of characterizing general optical fiber geometries, 

with an emphasize on photonic liquid crystal fibers. 

In this work, finite-difference methods in frequency domain (FDM/FDFD) are proposed to 
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study the propagation of light in PLCFs after reviewing related literature, and FDFD is 

implemented and carried out all through the thesis. The implemented schemes are 

examined with various factors, including comparison with experimental results. 

 

 

1.4 Organization of the Thesis 

 

The presented thesis consists of six chapters. In Chapter 1 an introduction of the thesis is 

given. In Chapter 2 the historical development from optical fibers to PLCFs is shortly 

accounted. Chapter 3 describes possible numerical modeling schemes for optical fiber 

characterization, among which FDFD methods are chosen in this work. Both scalar-field 

and vector-field FDFD schemes are implemented to characterize the PLCFs of interest, and 

are discussed in details in Chapter 4. Chapter 5 shows both numerical and experimental 

results obtained for the PLCF of interest. In Chapter 6, conclusions are drawn with 

discussions, and outlook for future work is presented. 
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2 Optical Fibers and Liquid Crystals 
 

In this chapter we introduce briefly the development of PLCFs, which originated from the 

concept of microstructured optical fibers (MOFs) and utilization of the specific properties 

of liquid crystals. 

 

 

2.1 Optical Fibers in Telecommunication and Beyond 

 

Electromagnetic waves provide the most reliable, economical and fastest means of 

information transfer in today’s communication technologies, which expand from radio 

waves, microwaves to infrared and the visible spectra. Historically, Alexander Graham Bell 

was known to be the pioneer in using light waves for communication. In 1880 he invented 

the photophone which he claimed as “the greatest invention I have ever made, greater 

than the telephone.” The schematic of the photophone can be found in Chapter 4 of the 

book Fiber Optic Essentials by Thyagarajan and Ghatak, 2007. Nowadays, standard optical 

wavelengths for telecommunication are specified at 1310nm and 1550nm, which coincide 

with the two low-loss bands of silica. Indeed, the dramatic reduction in transmission loss 

made optical fiber communication a practical technology, as accredited by the Nobel Prize 

in Physics, 2009 to the laureate Charles K. Kao, “for groundbreaking achievements 

concerning the transmission of light in fibers for optical communication.” Along with the 

development of semiconductor lasers and detectors, optical fibers are an essential 

building block of modern communication infrastructure, and are still burgeoning along 

with the growth of Internet. 

Other than in telecommunications, where they act as signal carriers, optical fibers also 

find their applications in the general fields of optics and photonics. By nature, optical 

fibers are suitable for: 

a) Long-haul signal transfer 

Progress in purifying silica has led to less than 0.2dB/km loss in modern telecom fibers. 

If we express this figure in real life, it means that after 10 kilometers of propagation, 

the optical power drops only by a factor of two. Such performance is unmatchable for 

other existing technologies. Together with fiber amplifiers which enable all-optical 

signal transfer over long distances, optical fibers have become the most significant 

backbone in telecommunications. 

b) Miniaturized optical systems 

To compensate the diffraction and to define the propagation direction of light, i.e., to 
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guide light in bulk optics, it usually requires various optical components such as lenses 

and mirrors. For example, in 1964, Goubau and Christian at Bell Labs proposed a beam 

waveguide that consists of a series of lenses (Thyagarajan and Ghatak, 2007). The 

focusing of lenses compensates the diffraction of light and therefore limits the spatial 

extension of the beam. 

A modern optical fiber has diameter around 125 microns, and limits the spatial extent 

of light to few tens of microns. Together with the ultra-low loss, an optical fiber guides 

light efficiently in terms of the ratio between the longitudinal propagation distance and 

the transverse spatial extent. 

With an optical fiber, one can easily bring light along almost arbitrary path to desired 

locations. Therefore, optical fibers are often advantageous in miniaturizing the size and 

the complexity of an optical setup, and moreover provide the setup with additional 

flexibility. Fiber optic endoscope (imaging fiber) and beam delivery systems illustrate 

such characteristic. In addition, fiber optic miniaturization also finds useful applications 

in many interferometric setups. 

c) Nonlinear optics 

The magnitude of nonlinear processes depends largely on the intensity of the light field. 

Optical fibers with typical core diameters, ranging from a few microns to a few tens of 

microns, possess high field intensity for efficient nonlinear processes. The book 

Nonlinear Fiber Optics by Agrawal, 2007 best justifies the active role of optical fibers in 

the field of nonlinear optics.  

d) Various sensing applications 

Optical fibers are extremely sensitive to external factors such as stress, strain, and 

temperature. For telecom uses, optical fibers are protected with additional polymer 

and fabric layers. However, when raw fibers are used, many sensing applications arise. 

One application worth mentioning is the high-temperature (up to approx. 2000K) 

sensor obtained with the use of sapphire (Al2O3) fibers (Dils, 1983; Shen et al., 1999). 

 

 

2.2 Microstructures in Optical Fibers 

 

Generally speaking, when optical fibers are addressed, step-index fibers (SIFs), owing to 

their vast uses in telecommunications, come naturally into mind. However, possible 

manipulation with the fiber geometry gives additional degree of freedom in tailoring the 

characteristics of the optical fibers. Microstructured optical fibers (MOFs) are the derived 

application of this concept. 

It is useful here to make some notes on terminology. Photonic crystal fiber (PCF) is 
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another common name to refer to this type of optical fibers because MOFs often contain 

periodic PC structures in the cladding region. In literature, sometimes the term PCF is 

reserved for PCFs with PBG guiding. In the context of the thesis, we refer to PCFs for their 

PC structure. Guiding mechanisms will be specified separately, and that leads to index- 

and PBG- guiding PCFs. 

 

 

 
Figure 2-1: Optical (OM) and scanning electron (SEM) micrographs of PCF structures 

A) Endlessly single-mode solid-core PCF; B) Far-field optical pattern produced by [A] when 

excited by red and green light; C) Birefringent PCF; D) Small-core (800 nm) PCF with 

ultrahigh nonlinearity and zero chromatic dispersion at 560 nm; E) First photonic band gap 

fiber; F) Near-field OM of the six-leaved blue mode that appears when [E] is excited by white 

light; G) Hollow-core photonic band gap fiber; H) Near-field OM of a red mode; I) 

Hollow-core PCF with a Kagome cladding lattice, guiding white light. (Russell, 2003) 

 

 

The introduction of microstructures broadens largely the use of optical fibers in nonlinear 

optics. One well-known example is the generation of supercontinuum (Dudley et al., 2006). 

In addition, recent studies on PCF structures have shown that by confining light in a 

sub-micron core, it is possible to extend the zero-dispersion wavelength to the visible 
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range (Russell, 2003; Knight et al., 2000). A PCF with close-to-zero chromatic dispersion 

over hundreds of nm was also reported (Reeves et al., 2002). Figure 2-1 shows some 

examples of PCF structures, excerpted from the review paper by Russell, 2003.  

One interesting degree of freedom that comes along with PCF geometries is the air holes 

in the cladding region. Filling the air holes with gaseous and liquid media leads to even 

more extraordinary properties of PCFs. The concept then was extended to the infiltration 

with LCs (Larsen et al., 2003). This thesis sets its focus on the last, PCFs infiltrated with LCs, 

which will henceforth be addressed as photonic liquid crystal fibers (PLCFs) (Wolinski et al., 

2006). 

Partly borrowed from Knight, 2003, Figure 2-2 shows some PCF designs among which we 

target this thesis on the characterization of the structure shown in Figure 2-2c for which 

the bandgap-guiding mechanism is possible (depending on the refractive index of LC used 

for infiltration). 

 

 

 

Figure 2-2: Some types of PCF geometries 

 

 

2.3 Guiding Mechanisms in Optical Fibers 

 

The guiding properties of an optical fiber depend on the cross-sectional refractive index 

profile. In the case of conventional fibers, which consist of a higher-index core and a 

lower-index cladding, the guidance of light is well explained by its confinement in the 

higher refractive index medium of the core. 
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On the other hand, studies on photonic crystals have ported new visions into the field of 

optical fibers. Yablonovitch, 1993 described in his paper that by periodically arranging the 

structure in the scale of the wavelength, one can obtain photonic bandgaps that are 

analogous to atomic bandgaps in atomic crystals where the periodicity is in the order of 

the wavelength of electron waves. A defect state within such a photonic crystal enables 

the confinement of waves with certain frequency and wave vector, as they are forbidden 

to propagate in the surrounding photonic crystal (John, 1987). 

 

 

 

Figure 2-3: Propagation diagrams for A) Single-Mode Fiber and B) Photonic Crystal Fiber 

Each shade indicates the number of regions where the light is free to propagate. Above: 

Light propagates freely in all three regions, the Ge:silica core, the silica cladding, and the 

surrounding air, in the blue-shaded area. In the cyan-shaded area, light is no longer free to 

propagate in air as the effective refractive index (neff) of propagation exceeds that of the air. 

As we approach to the bottom right, neff further increases such that light also becomes 

evanescent in the silica cladding (red-shade area), and eventually no region supports light 

propagation when neff reaches cut-off (black-shaded area). Bottom: for a PCF, other than the 

continuous bands of areas, there also exist discrete ‘fingers’ which represent the location of 

photonic bandgaps of the PC cladding. (Russell, 2003) 
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In the following two sections, we use the ‘propagation diagrams’ (Figure 2-3, after Russell, 

2003) to illustrate the possible guiding mechanism(s), which are index- and/or PBG- 

guiding, in two fiber geometries, a conventional single-mode fiber with germanium-doped 

silica core (Ge:silica) and a PCF. The axes of the propagation diagram are the 

dimensionless quantities βΛ and ωΛ/c, where β is the axial wave vector component, Λ the 

inter-hole spacing, and c the speed of light in vacuum. The maximum value of β is set by 

kn, where n is the refractive index of the medium in the region (air, silica, Ge:silica or PC) 

under consideration. 

 

 

2.3.1 Index-Guiding 

 

In the index-guiding mechanism, light is localized in areas with higher refractive indices. 

Conventional optical fibers belong to this group. Light is sometimes said to be guided by 

total internal reflection (TIR) with ray optics, and the discrete existence of modes 

explained by constructive interferences with wave optics. In additional, a holey 

micro-structured optical fiber with solid core also works under a similar mechanism 

known as modified total internal reflection (mTIR) (Russell, 2003). 

In Figure 2-3A we see that the diagram is separated into four regions, with the slope of 

the boundaries specified by the refractive index of medium, i.e., 

 ,
1

0

0

0 nknc

kc

c
Slope 




 (2.1)  

and effective refractive index (neff) is defined for regions in between these boundaries as 

 .0



 c

k
neff   (2.2)  

When frequency ω is fixed, neff increases with β. For light to propagate, it requires that neff 

< n, where n is the refractive index of the medium. This infers that for β < kn, light is free 

to propagate, and for β > kn, it is evanescent. In a conventional single-mode fiber, the 

guiding of light works at points like R, where light is allowed to propagate in the Ge:silica 

core but not the silica cladding. 

 

 

2.3.2 Photonic Bandgap Guiding 

 

In the photonic bandgap guiding mechanism, the guiding of light is possible at points like 

P in Figure 2-3b, where light is allowed to propagate in the air- or silica- core but not in 

the PC cladding. Hollow-core PCFs (Figure 2-2b) are an example of this; light is confined by 
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the surrounding PC cladding to within the air-core. On the other hand, a PCF can also 

propagate light at points like Q in Figure 2-3b with index-guiding (mTIR), where light is 

allowed to propagate in silica but not in the PC cladding (Figure 2-2a). Finally, points 

located within the full photonic bandgaps in the cyan-shaded area, 2-PC&silica, in Figure 

2-3b enable solid-core PBG-guiding. In this case light is allowed to propagate in silica but 

not in the PC cladding due to the PBG effect (Figure 2-2c). 

 

 

2.4 Photonic Liquid Crystal Fibers 

 

Liquid crystal (LC), the fourth state of matter which has properties between those of liquid 

and those of solid crystal, was first discovered in 1888 by Austrian botanical physiologist 

Friedrich Reinitzer. LCs have found various application in modern technologies, in 

particular, liquid crystal displays (LCDs) and also the more general form, spatial light 

modulators. 

By infiltrating the holes in PCF with liquid crystal, a new type of optical fibers, the 

photonic liquid crystal fiber (PLCF) is obtained. An initially index-guiding PCF (Figure 2-2a) 

can be converted to a PBG-guiding PLCF (Figure 2-2c). The liquid crystal placed in periodic 

holes gives high tunability to PLCFs that can be thermally, electrically, and optically 

controlled (Wolinski et al., 2006; Lee et al., 2010), and brings various potential 

applications to the field of fiber optics. Figure 2-4 shows an example of the tunability of 

the PLCF, after Larsen et al., 2003. 
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Figure 2-4: A PCF filled with short-pitch chiral nematic liquid crystals (N*LC) shows PBG location 

sensitivity of 1nm/°C (visible) and 3nm/°C (infrared) 

The corresponding images are: a) Green, T=77°C; b) Yellow, T=89°C; c) Off state, T=91°C; d) 

Blue, T=94°C. (Larsen et al., 2003) 

 

 

LCs are anisotropic, and, in most cases, have averaged refractive indices that are higher 

than that of silica. When we consider fibers geometries as shown in Figure 2-2c, 

PBG-guiding takes place in most cases. However, by changing the glass substrate to higher 

refractive index material or choosing LC with lower refractive index, it is also possible to 

achieve index-guiding. Furthermore, the refractive index of LC can also be engineered 

and/or tuned with temperature so that both index-guiding and PBG-guiding are possible 

with the same PLCF (Wolinski et al., 2006). 

  



Chapter 3   Numerical Modeling Schemes 

 

 

- 12 - 

3 Numerical Modeling Schemes 
 

In this chapter various numerical schemes for the characterization of optical fibers are 

discussed. Related work and publications are reviewed by Chiang, 1994, Scarmozzino et al., 

2000 and Saitoh and Koshiba, 2005. The classification shown in the last paper is adopted 

in Section 3.2. 

 

 

3.1 Theory for Optical Fiber Modeling 

3.1.1 Maxwell Equations 

 

The macroscopic Maxwell equations are: 

 , D  (3.1)  

 ,0 B  (3.2)  

 ,
t

B
E




  (3.3)  

 ,
t

D
JH




  (3.4)  

where 

D = Electric induction, 

B = Magnetic induction, 

E = Electric field, 

H = Magnetic field, 

ρ = Charge density, 

J = Current density, 

and the vector notations are neglected to point out mainly the form of equations. In the 

context of this thesis, we focus on non-magnetic (μr = 1, μ = μ0, B =μ0H, where μ is the 

permeability, μ0 the permeability in vacuum, and μr the relative permeability), source-free 

(ρ = 0, J = 0) media. The corresponding reduced equations are: 

 ,0 D  (3.5)  

 ,0 B  (3.6)  

 ,0
t

H
E




   (3.7)  

 .
t

D
H




  (3.8)  
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3.1.2 Scalar-Field Formulation 

 

When describing optical waveguides, very often Maxwell equations are introduced in the 

further reduced form where the vector nature of is dropped and results in the scalar wave 

formulation. 

For an isotropic medium, within linear regime, 

 ,0 EED r   (3.9)  

where ε is the permittivity, ε0 the permittivity of vacuum, εr the relative permittivity, and 

the underlines indicate the tensor ranks. Assuming that the change in permittivity is 

negligible, i.e., ε is constant, we have the following relations 

     ,000  EED rr    .0 E  (3.10)  

By performing curl operation on both sides of equation (3.7), we have 

 .
)(

2

2

00 D
tt

H
E









   (3.11)  

With the vector algebra identity 

    ,FFF   (3.12)  

and equations (3.8-9), we obtain the following equation that contains only the electric 

field, E, 

     .
2

2

00 E
t

EE r



   (3.13)  

Equation 3.10 shows that the divergence of E is zero, and therefore 

 .
2

2

00

2 E
t

E r



   (3.14)  

We obtain the wave equation, which relates the spatial derivatives with the temporal 

derivatives. Similarly, starting from magnetic fields, we obtain the following differential 

equation: 

 .
2

2

00

2 H
t

H r



   (3.15)  

In equations (3.14) and (3.15), we see that the field f(x, y, z, t) components, E:Ex-Ey-Ez 

and H:Hx-Hy-Hz, in each equation can be decoupled as there is no coupling among them. 

The scalar-field formulation is thus sufficient, and hence in the following we drop the 

first-rank tensor notation of the E- and H- fields. Additionally, we assume certain time and 

space dependence of the fields in the optical fibers, i.e., 

      ,expexp),(),,,( 00 tziFtziyxFtzyxF T    (3.16)  
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where F can be either the electric field/induction (E, D) or the magnetic field/induction (H, 

B), and the T subscript denotes the transverse component of the field, known as the 

modes. The coefficients in the exponential terms are referred to as the propagation 

constant (β) and angular frequency (ω). In this thesis we focus on frequency domain 

analysis, therefore the angular frequency is fixed and denoted as ω0. Accordingly, we 

reduce the z- and t- derivatives of the fields as follows: 

 ,0i
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and 
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Equation (3.14) becomes 

   ,
2
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22

TrTT EE    (3.19)  

where the common exponential terms are omitted on both sides of the equation, and the 

Laplace operator is separated into the transverse and the longitudinal (z-) components, 
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By introducing 
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where k is the wave vector, c the speed of light in the material considered, c0 the speed of 

light in vacuum, n the refractive index, and 
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together with some rearrangement, we rewrite equation (3.19) in the following form: 
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One can immediate identify equation (3.23) as an eigenvalue problem. Such problem can 

be solved by the scalar-field finite difference methods in frequency domain (FDFD) later 

discussed in Section 4.1. In our scalar-field FDFD formulation, the transverse Laplace 

operator is expanded in the Cartesian coordinate, 
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However, the differential equations can be solved analytically by expanding the transverse 

Laplace operator in cylindrical coordinates, 
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which correspond to the cylindrical appearance of typical optical fibers. In this case, 

equation (3.23) results in the more familiar form in fiber optics textbooks, 
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With the technique of separation of variables, we have 
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Scaling the above equation by 
R

r 2

, we have 
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and rearrange the formula so that only one variable is on one side of the equation: 
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Physically, we know that Θ(θ) is 2π-periodic:  
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Therefore we can rewrite equation (3.29) into two equations with single variable coupled 

by l, 

 
22

2

0

2

022

2

22

)()(
)(

)(
)(

lr
c

rnrR
dr

d

rR

r
rR

dr

d

rR

r












































 
  (3.32)  

and 
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From these two equations we can derive the linearly polarized LPlm modes (Gloge, 1971). 
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We demonstrate the linearly polarized approximation with scalar-field formulation in 

order to show the effectiveness and accuracy of finite-difference methods. This will be 

discussed in Chapter 4 together with details of our scalar-field FDFD formulation. 

 

 

3.1.3 Vector-Field Formulation 

 

On the other hand, either the change in refractive index is significant or polarization 

properties are to be included, the vector-field formulation has to be introduced. 

Accordingly, two vector fields -- each with three scalar components -- are considered, the 

electric field E:Ex-Ey-Ez, and the magnetic field H:Hx-Hy-Hz, which are expressed in 

Cartesian coordinates. Maxwell equations govern the generation and evolution of all 

these fields, with every of them closely related, as well as the electromagnetic properties 

of matter, the permittivity ε and the permeability μ. Consequently, the vector-field 

formulation is more complicated than the scalar-field formulation as various cross 

coupling terms have to be accounted. However, depending on the permittivity and the 

permeability tensors of the material, with proper mathematical treatment, some fields 

can still be decoupled. 

Again, starting from the curl Maxwell equations (3.7-8), and after dropping the 

t-derivative by assuming time dependence exp(iω0t), we have: 

 ,00 HiE   (3.34)  

 
.0 DiH   (3.35)  

Considering an anisotropic medium, within linear regime, we have 

 .0 EED r   (3.36)  

Performing curl operation on equation (3.33), we have: 

   ,2

000

2

000 EkEHiE rr    (3.37)  

where some replacements are made according to equations (3.21-22). According to 

equation (3.5), with vector algebra identity, we have 

       ,0000  EEED rrr   (3.38)  

which implies 
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 (3.39)  

It should be noted the difference between equations (3.38) and (3.10) in view of vector 

algebra. Together with the vector algebra identity (3.12), we have 
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Combining equations (3.37) and (3.40), we have 

 .02

0

2 
















 EkEE r

r

r





 (3.41)  

In order to compare equation (3.41) with equation (3.23), we also separate the Laplace 

operator into longitudinal and transverse components with the help of equations (3.18) 

and (3.20), and drop the common exponential term on both sides of the equation. This 

results in 
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We see that in the above equation, there exist two terms for which the coupling between  

fields is possible. One of them is related to the gradient of the permittivity tensor, and the 

other is related to material anisotropy. From equation (3.42) we see clearly that either 

when the change in refractive index is sharp or the material possesses non-diagonal 

anisotropy, the scalar-field LP approximation is no longer valid. 

Similarly, performing again curl operation on the magnetic curl equation (3.34), we have 

      .000 EEiEiDiH rrrr    (3.43)  

With the vector algebra identity (3.12), we have 
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Combining equations (3.34-35) results in 
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Equations (3.43-45) show that 
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Rearranging the above equation we obtain the magnetic field counterpart of equation 

(3.41), 

   .02
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Either equation (3.41) or equation (3.47) can be applied as the starting point of the 

eigenvalue problem. However, in Chapter 2 of their book, Joannopoulos et al., 2008 stated 

that for mathematical convenience, the equation with the magnetic field is preferred for 

numerical calculations. In our vector-field FDFD formulation, this is not a concern as 

neither is used. Instead, we followed the formulation based only on the two curl 

equations proposed by Zhu and Brown, 2002. Details regarding our vector-field FDFD 

formulation are discussed in Chapter 4. 

In this section, we have theoretically shown the limits of the commonly-known scalar-field 

LP approximation for the characterization of optical fibers. The magnitude of differences 

between the vector-field formulation and the scalar-field LP approximation are given and 

discussed in Section 4.7. 

Now that we have reviewed the related theory, which is mostly Maxwell’s 

electromagnetism, we proceed to the next part where various numerical schemes are 

briefed. 

 

 

3.2 Overview of Characterization Methods for Microstructured Optical Fibers 

 

We recall that in this section we follow the paper by Saitoh and Koshiba, 2005, where 

modeling methods for PCFs are categorized into three types of approaches. They are: 

1) Effective-Index Approach, 

2) Basis-Function Expansion Approach, and 

3) Numerical Approach. 

In the following sections, the advantages and disadvantages of each modeling method is 

briefed and discussed with an emphasis set on the characterization of PLCFs. It is 

encouraged to consult the mentioned paper for further details regarding various 

characterization approaches for PCFs. To begin with, we draw a schematic representation 

of a triangular-lattice PCF, as shown in Figure 3-1. The defect in the center of the periodic 

air holes is referred to as the core, while the PC functions as the cladding. 
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Figure 3-1: Schematic of a triangular-lattice PCF 

The PCF is characterized by the hole diameter d, the pitch of holes Λ, and the number of the 

rings of holes (e.g., in this plot, there are six rings). 

 

 

Depending on whether the air holes are infiltrated or not, and then on the refractive index 

of the infiltrating material, we can categorize PCF geometries into several different types, 

as already shown in Figure 2-2. 

 

 

3.2.1 Effective Index Approach 

 

In Section 3.1 we discussed briefly the scalar-field LP approximation. Although its use is 

limited, it nevertheless gives basic ideas on how light propagates in an optical fiber. In a 

standard step-index fiber with core radius ρ and core and cladding refractive indices ncore 

and nclad, the number of guided modes is determined by the normalized frequency, also 

known as the V parameter (Snyder and Love, 1983): 

 .
2 22

cladcore nnV  



 (3.48)  

To quantify the requirement for monomode operation in an index-guiding PCF, Birks et al., 

1997 and Knight et al., 1998 extended the use of the V parameter by proposing a simple 

scalar model using an effective refractive index for the cladding, nclad,eff, which is 

determined by the propagation constant of the fundamental space-filling mode (βFSM) of 

the PC cladding, 
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In this sense, one can extend the guiding requirement for the modal propagation constant 

β of a conventional step-index fiber to that of a PCF, 

 .,effcladFSMsilica knkn  

 

 (3.50)  

The propagation constants of the fundamental space-filling modes can be calculated by 

solving wave equations within a unit cell of the photonic crystal centered on one of the air 

holes with Neumann boundary condition along the axes of symmetry. 

 

 

3.2.2 Basis-Function Expansion Approach 

 

The effective index approach gives simple and qualitative descriptions of PCFs based on 

the extended V parameter. However, it does not give quantitative results for modal 

propagation constants nor the dispersion properties of PCFs. These properties strongly 

depend on the PCF geometries, which are not accounted in the effective index approach. 

Moreover, since a scalar model is used, it is insufficient to describe the properties related 

to the polarization of light and material anisotropy. 

To extend the scope of characterizations, various vector models using different basis 

functions for PCFs have been proposed. One of the most widely used is the plane wave 

expansion (PWE) method. As the name suggests, the electromagnetic fields are expanded 

according to the plane wave basis. The fiber geometry, i.e. the permittivity profile is 

expressed by Fourier series. Other alternative methods are the localized function method 

(LFM) and the multipole method (MM). 

 

 

3.2.3 Numerical Approach 

 

The basis-function expansion approach takes advantage of the simplicity of periodic 

structures of a PCF with circular holes, and gives decent information about light 

propagation therein. However, for more complicated fiber structures consisting for 

example of non-circular hole, as in suspended core fibers, it is no longer applicable. 

Moreover, it also fails when applied to optical fibers with longitudinal permittivity 

variations, which is in general the case for PLCFs as LCs are not perfectly crystalline. 

Numerous direct numerical methods have been proposed to analyze general fiber 

structures and can be divided in the following categories: 

1) Finite Element Methods (FEM) 

2) Boundary Element Methods (BEM) 
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3) Beam Propagation Method (BPM) 

4) Finite Difference Methods in Frequency Domain (FDM/FDFD) 

5) Finite Difference Methods in Time Domain (FDTD) 

The numerical approach is what we focus on later throughout the thesis. For the 

characterization of PLCFs, we will not go through all the categories in details but rather 

focus on and will discuss about FDFD and BPM in the next section. 

 

 

3.2.4 Choices for PLCF Characterization 

 

To find out what numerical methods are suitable for PLCF characterization, we first have 

to know the properties of a common PLCF while keeping in mind the advantages and 

disadvantages of the numerical methods. Two important aspects should be mentioned for 

the characterization of PLCFs. The first one is the material anisotropy that comes with 

liquid crystal. As discussed in Section 3.1.3, the more complicated the permittivity tensor, 

the more complex the numerical problem is, as fields are less likely to be decoupled from 

each other. The other aspect comes from the geometry of the PCF host. A PCF is larger in 

transverse extent compared to conventional single-mode fibers, but meanwhile has 

smaller radius of curvatures of changes in the refractive index profile. The former 

indicates that a bigger calculation window is necessary, and the latter suggests finer grids 

with smaller step size is required. Both aspects pose challenges in the characterization of 

PLCFs, and are discussed in the following.  

 

Material Anisotropy 

As previously discussed, both material anisotropy and high index-contrast require the use 

of vector-field formulation. Moreover, from the material side, when the crystal axes do 

not coincide with the axes of the fields (Ex, Ey, Ez, Hx, Hy, Hz), the form of the permittivity 

tensor also has to be considered. This is further discussed in Sections 4.2-3. There have 

been various studies on vector-field FDFDs and BPMs for characterizations of optical 

elements ranging from conventional fibers to PCFs and anisotropic waveguides. When the 

optical fiber is homogeneous along the propagation (z-) axis, two-dimensional (2D) FDFD 

is sufficient, and that was the main focus in literature. When there exists inhomogeneity 

along the z-axis, three-dimensional (3D) BPM is often favored. 3D-BPM is also useful in 

characterizing fiber optics elements such as couplers. An alternative way to treat the 

z-inhomogeneity of a PLCF is to consider 3D-FDFD over a certain period. For example, 

recently Ivinskaya et al., 2010 applied 3D-FDFD to characterize photonic nanocavities in 

contrast to the time domain methods. The formulation of 2D-FDFD, evening considering 



Chapter 3   Numerical Modeling Schemes 

 

 

- 22 - 

material anisotropy, is relatively compact, while for 3D-BPM, it is more complicated. This 

explains partly why we choose FDFD to be our fundamental numerical tool for the 

characterization of PLCFs. 

 

Size of PLCF 

Optical fibers are small in size from normal perception. For a typical PCF structure, the 

diameter is only of about 100μm. However, when compared to the wavelength of light, 

this corresponds to about 60λ in the telecommunication range and 200λ in the visible 

range. This is extremely large for finite-difference numerical simulations, as the 

computational resolution and window are often specified with respect to wavelength. For 

example, 20λ-by-20λ is regarded as ‘large domain size’ in FDTD. For 2D-FDFD, It has been 

reported that λ/15 yields fairly accurate results (Zhu and Brown, 2002). Summing up all 

these factors, characterization of PLCF is demanding and therefore numerically expensive 

to be performed with time domain methods as extra memory storage for time steps are 

required in additional to the discretized spatial domain. Even with frequency domain 

methods, the simulation margin is also limited. Finite element methods and boundary 

element methods can reduce the number of points needed for the computations, but 

more effort is required to consider the vector fields and the material anisotropies. 

Fortunately, in most cases, even if only part of the periodic structure of a PCF/PLCF is 

considered in simulations, relevant results are obtained, as light is confined within a 

certain number of ‘rings’ in the periodic structure. Another advantage that comes with 

periodicity is the possibility to apply proper boundary condition that accounts for 

repeating cell structures. 

 

To sum up, the reason for choosing FDFD is that the formulation is relatively simple, while 

BPM can be implemented to account for longitudinal variation (z-inhomogeneity) of a 

PLCF. It should also be noted that, in compliance with the objective of the thesis, FDFD 

and BPM are computationally less expensive and efficient, therefore extending their 

accessibility to commercial personal computers. The computed modal field distributions 

in FDFD can be used as the initial fields for BPM, which shall reduce the propagation 

distance and steps required for converged numerical results. In this thesis, more 

specifically, FDFD is implemented to study the characteristics of PLCFs. Both scalar-field 

and vector-field formulations are implemented for comparison. In the next chapter the 

FDFD schemes are described in detail. Figure 3-2 gives an estimate on the computational 

effort for an exemplary PLCF geometry with vector-field FDFD. As one can see, the 

memory requirement is rather demanding. 

 



Chapter 3   Numerical Modeling Schemes 

 

 

- 23 - 

 
Figure 3-2: Estimation on 2D-FDFD computational effort for an exemplary PLCF geometry 

with two coupling field components 

On the top we show an exemplary fiber geometry to be simulated. On the bottom-left we 

see that the required memory is large. The numbers in red parentheses specify the form of 

anisotropy, followed by the data type for storage. Requirement on memory can be reduced 

by using single-precision floating-point numbers than double-precision ones, however, for 

example, MATLAB 32-bit does not support single-precision sparse matrix. Simulations for 

fibers with photonic crystal structures are demanding. With MATLAB 32-bit, the maximum 

number of points allowed is approximately 350 by 350, when 48 eigenvalues are to be 

sought for an diagonally anisotropic PLCF. 
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4 Finite Difference Methods in Frequency Domain (FDM/ FDFD) 
 

Maxwell equations (3.1-4) relate four vector fields (E, H, D, B) with four derivatives (∂x, ∂y, 

∂z, ∂t). The time derivative can be dropped by assuming time dependence exp(-iω0t) of 

the fields, resulting in direct multiplication of -iω0. This is the basis for frequency domain 

methods: only fields of a fixed optical frequency are considered. Assuming field 

dependence exp(iβz) along the propagation axis z, the z-derivative is also reduced to 

direct multiplication of iβ. Such field dependence in z forms the mode theory for 

electromagnetic fields propagating within an optical waveguide. A mode is said to have its 

field distribution unchanged along the propagation axis. Mathematically, modes are the 

possible solutions of wave equations. 

The remaining x- and y- derivatives are approximated by finite-difference formulae. 

Having all four derivatives deduced, the Maxwell equations are solved numerically with 

specific geometry and property of the medium. 

The above two paragraphs describe the idea behind FDFD, with also a touch on the mode 

theory of optical fibers. Conventionally, as derived in Sections 3.1.2-3, all four Maxwell 

equations are involved and result in wave equations where second-order derivatives 

appear. The corresponding related work includes Bierwirth et al., 1986, Stern, 1988, Lüsse 

et al., 1994, and Fallahkhair et al., 2008. On the other hand, Zhu and Brown, 2002 first 

proposed a more compact FDFD scheme based on the two curl Maxwell equations and 

incorporated Yee’s staggered mesh (Yee, 1966) to study the modal characteristics of MOFs. 

Numerous publications followed such FDFD scheme and extended its use to even more 

general fiber geometries (Guo et al., 2004; Yu and Chang, 2004; Chen et al., 2009). It is 

worth mentioning here that Yee’s staggered mesh has been widely used in FDTD schemes 

owing to its effectiveness. 

In this chapter, in order to gain some insight on FDFD, we first derive a scalar-field FDFD 

scheme based on the wave equations (3.14-15). The numerical results will then be 

compared, in particular, with its analytic counterpart given by the scalar-field LP 

approximation. Next, we discuss the material anisotropy involved in PLCFs and review 

corresponding work in literature. Finally, taking into consideration the computational 

accessibility and efficiency, we formulate our vector-field FDFD based on that of Zhu and 

Brown, 2002 and extend its use to optical fibers with more general material anisotropy. 
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4.1 Scalar-Field FDFD 

 

As derived in Section 3.1.2, combining equations (3.23-24), we obtain the following 

scalar-field eigenvalue problem, 
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One of the possibilities to approximate the second-order derivatives with respect to x and 

y are approximated is to use the three-point central finite differences (FDs) as shown in 

Figure 4-1. This gives us 
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Figure 4-1: Finite-difference formulae for 2nd-order differentiation 

The three-term central difference for 2nd-order derivative (second formula from the top) is 

implemented in our scalar-field FDFD scheme, as derived in Equation (4.2). 
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The eigenvalue problem is then discretized as 
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 (4.3)  

We can see that at each point of the mesh grid, E(x,y) is associated with itself and another 

four neighboring points. This can be represented in the matrix form as shown in Figure 

4-2. In FDFD, such matrix is referred to as the global matrix. The eigenvalues of the global 

matrix give access to the effective refractive indices (neff = β/k0) of the modes and the 

eigenvectors give the modal field patterns. We note that the full size of the global matrix 

is (MxN)2, where M and N grid points are used to represented the fiber geometry in the x- 

and y- dimensions, respectively. One can immediately see that in this case the use of 

memory is inefficient if full matrix is registered. Fortunately, with the development of 

sparse matrix packages, we can reduce significantly the requirement on memory. For 

example, in the three-point FD case, the memory required is reduced from (MxN)2 to 

(MxN)x5. Given M = N = 100, the reduction factor is already 2000, and further increases 

dramatically with the number of grid points used. 

More accurate finite-difference schemes for the approximation of second-order 

derivatives (Figure 4-1) can be utilized to reduce approximation errors at the cost of a 

more complex global matrix. We will validate the accuracy of the three-point scalar-field 

FDFD with comparison to the analytic scalar-field LP approximation in Section 4.7. The 

MATLAB code implemented for scalar-field FDFD is given in Appendix A. Despite its 

simplicity, it is worth mentioning that Riishede et al., 2003 has also applied the scalar-field 

FDFD to the modeling of MOFs. 
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Figure 4-2: Discretized scalar-field eigenvalue problem with corresponding global matrix 

In our matrix arrangement ([y, x]; y is the major index and x is the minor index), the 

horizontal borders (dashed lines) of the global matrix corresponds to the boundaries in the y 

dimension, while the boundaries in the x dimension are colored in red. 

 

 

4.2 Material Anisotropy in FDFD 

 

In this work we set our focus in the characterization of more general optical fiber 

geometries, with an emphasis on PLCFs, therefore we have to consider the anisotropic 

properties of liquid crystals. So far some FDFD studies on light propagation in waveguides 

with material anisotropy have been reported. For example, Zhu and Brown, 2002 

proposed a FDFD scheme for optical fibers that is capable of taking into account the 

diagonal anisotropy. Fallahkhair et al., 2008 reported a FDFD scheme that accounts for the 

transverse anisotropy in waveguides. Chen et al., 2009 further considered the general 

anisotropy and tested their FDFD scheme with an anisotropic waveguide and an LC-core 

waveguide. The formulations of Zhu and Brown, 2002 and Chen et al., 2009, as mentioned 

in the beginning of this chapter, are based on the curl Maxwell equations, and only the 

first-order derivatives are required in the finite-difference scheme. Fallahkhair et al., 2008, 
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on the other hand, introduces also the divergence Maxwell equations and require 

second-order derivatives in the finite difference scheme. 

In the following, we start with the vector-field FDFD proposed by Zhu and Brown, 2002 for 

its simplicity and use of Yee’s staggered mesh, which reduces the number of grid points by 

a factor of two for a fixed fiber geometry. This is beneficial in the characterization of 

structures which are large in size. By introducing some correction terms, we have 

extended the FDFD to include transverse material anisotropies. 

 

 

4.3 Vector-Field FDFD 

 

Starting from equations (3.7-8), along with equations (3.16-17, 19-20), we replace the t- 

and z- derivatives of the two curl Maxwell equations and result in the following coupled 

equations of the vector-field components, 
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and 
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To simplify the notations, we introduce the free space impedance Z0, 
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to replace both μ0 and ε0 by  
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and result in the following two sets of coupled equations, 
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and 
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Since in an eigenvalue problem, the magnitude of the eigenfield (eigenvector) does not 

have physical meanings, we can further simplify the equations by scaling the electric 

field/induction E, D with respect to the magnetic field/induction H, B, 
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This removes Z0 and its inverse terms from the coupled equations. Also, for simplicity, we 

drop the prime (‘) notations on D and E and arrive at the following equations, 
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The finite differences are then incorporated to obtained the x- and y- derivatives. Various 

discretization schemes have been proposed among which the staggered mesh proposed 

by Yee, 1966 has shown its effectiveness and accuracy. We adopt the Yee mesh 

configuration that is shown in Figure 4-3. Discretizing equations (4.11-12) accordingly 

leads to 
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Figure 4-3: The staggered Yee mesh configuration for the vector-field FDFD implemented 

An exemplary boundary for regions with permittivities εa and εb is drawn and the region 

with εa is shaded in blue. 
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Since we consider non-magnetic materials, the relation between B and H, described by 

the permeability μ, is readily accounted in the formulation. Next, in order to couple the 

sets of equations, (4.4-5) or (4.11-12), we consider the relation between D and E, 

described by the permittivity ε. We limit ourselves to linear regime where the permittivity 

ε is in the form of a second-rank tensor (i.e., a 3-by-3 matrix). In this sense the material 

anisotropy falls into four possible forms of permittivity tensors, as shown in Table 4-1. 

 

 

Table 4-1: Material anisotropy and corresponding permittivity tensor form 
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Each tensor form has different complexity in the numerical problem to be computed, and 

apparently, the complexity rises as we proceed from tensor form a to tensor form d. 

Tensor forms a-c have global matrices of the same size but different numbers of non-zero 

values. Tensor form d, on the other hand, results in a global matrix that is four times as 

large. We recall that for tensor form a with small variations in permittivity, scalar-field 

formulation is valid and reduces the global matrix to one-quarter the size. Table 4-2 gives 

the sizes of the eigenvalue problem and the global matrix for each tensor form. Table 4-3 

gives the sparsity of the global matrix and its size for tensor forms a-c, after Fallahkhair et 

al., 2008. 

The FDFD scheme by Zhu and Brown, 2002 allows the introduction of diagonal 

anisotropies (tensor form b). Relative error less than 10-5 on fundamental neff was 

reported when tested with a step-index fiber with high index contrast. The analytic value 

was used as the reference. Although the work of Fallahkhair et al., 2008 extends to 

transverse anisotropies (tensor form c), the formulation is somehow complicated. It also 

uses normal grids and thus supposedly more computationally expensive. Chen et al., 2009 

extended the work to arbitrary anisotropies, with a similar formulation from that of Zhu 

and Brown, 2002, where Yee mesh is also introduced to reduce computational effort. 

However, the size of the corresponding eigenvalue problem is quadrupled and thus 

computationally demanding. 
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Table 4-2: Complexity of FDFD eigenvalue problem and size of FDFD global matrix with 

respect to permittivity tensor form 

Tensor Form Eigenvalue Problem 
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(Full Matrix) 
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Table 4-3: Sparsity of FDFD global matrix with respect to permittivity tensor form 

a b c 

   

Isotropic Diagonally Anisotropic Transversely Anisotropic 

M*N*2*5 M*N*2*9 M*N*2*16 

The black squares represent non-zero values, and therefore have to be stored in the sparse 

matrix. The fewer the black squares, the higher the matrix sparsity is and hence the less 

demanding the memory requirement is. After Fallahkhair et al., 2008. 
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Since the thesis targets in analyzing general fiber geometries, one might think it is 

straightforward to consider tensor form d with arbitrary permittivity tensor. However, 

although optical fibers are of the size of a few tens of microns to few hundreds of microns 

and therefore are small from the common perception, they are in fact large in size for 

numerical simulations. The full anisotropy scheme, tensor form d, having a global matrix 

four times bigger than the other tensor forms a-c, limits its usefulness when the 

computational environment is limited. 

The FDFD formulation by Zhu and Brown, 2002 is simple and its computation less 

demanding. We therefore follow such scheme and will show that by adding cross terms, it 

can be extended to include transverse anisotropies. 

We come back to the formulation of our vector-field FDFD. We consider media with 

transverse material anisotropy and the corresponding permittivity tensor form c, 
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Equations (4.11-12), together with equation (4.15), can then be written in matrix forms as 
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(4.16)  

and 
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where 
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(4.19)  

are the finite-difference (FD) matrices subjected to how the two-dimensional fields are 

arranged into one-dimensional vectors for matrix computation. In our formulation the 

field-to-vector assignment is the same as shown in Figure 4-2. The FD matrices also 

depend on the boundary conditions specified. Figure 4-4 illustrates two common types of 

boundary conditions, which are the Dirichlet and the Neumann boundary conditions. 

Values are designated on the Dirichlet boundaries, while derivatives are designated on the 

Neumann boundaries. We note that for FD matrices Ux and Vx in equations (4.18-19), 

there exist zeros in the off-diagonal values which represent the boundaries in x-direction, 

similar to the red shades in Figure 4-2. Exemplary FD matrices subjected to different 

boundary conditions are given in Table 4-4. 

 

 

 

Figure 4-4: Schematic of Dirichlet and Neumann boundary conditions 

For both types we use only zero values in our formulations, i.e. the zero-value (the blue 

boundaries) and the zero-derivative (the red boundary) boundary conditions. For the 

exemplary symmetric field pattern (mode) shown here, it is possible to use only half of the 

domain to simulate the whole structure, where the zero-derivative boundary acts as the axis 

of symmetry. 
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Table 4-4: Exemplary 1st-order finite-difference matrices for different boundary conditions 

FD 
Zero-Value 

Dirichlet Boundary Conditions 

Zero-Derivative 

Neumann Boundary Condition 
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Equations (4.16-17) can be expanded into: 
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and 
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After some algebra replacing Ez and Hz, we obtain two eigenvalue equations with respect 

to the electric field and the magnetic field, respectively. For electric fields: 
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where P is the global matrix, with the sub-matrices: 
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When εr,xy = εr,yx = 0, the sub-matrices reduce to those in Zhu and Brown, 2002. Similarly, 

for magnetic fields: 
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where Q is the global matrix, with the sub-matrices: 
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 (4.31)  

Now that we have obtained the eigenvalue problems in our vector-field FDFD, we solve 

the eigen problem by using an available eigensolver and obtain the fields Ex, Ey and Hx, 

Hy. The corresponding fields Hz and Ez can then be calculated with equations (4.20-21). 

As previously discussed, sparse matrices are introduced to decrease the amount of 

memory required. We use MATLAB as our simulation environment. MATLAB readily 

includes the Arnoldi Package (ARPACK) as the function eigs. More details on the algebra in 

arriving at the global equations (4.22-31) can be found in Appendix E. 

 

 

4.4 Some Techniques Regarding Improvement of FDFD 

 

To further improve the performance of FDFD, some techniques have been proposed. For 

example, Yee’s staggered mesh has been already incorporated in our FDFD to reduce the 

amount of grid points needed while maintaining the accuracy. If we use a normal mesh, 

we only have to change the FD matrices Ux, Uy, Vx and Vy in equations (4.18-19). 

Index-averaging (Zhu and Brown, 2002) is another simple but useful technique, especially 

when the resolution for spatial discretization is low. It is particularly important when the 

computational power limits the number of grid points of the simulation. Correspondingly, 

the larger the fiber geometry, the more sparse the grid points. The idea of index-averaging 

is to make use of more values (i.e., grayscale over binary) near the boundaries with 

changes in refractive index. It has been shown that index-averaging increases greatly the 

convergence of numerical calculations. In our simulation, index-averaging is implemented 
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through interpolation. As an example, on the bottom-left of Figure 4-5, the refractive 

index of the point in red is given by εaverage = η * εa + (1 - η) * εb, where η is the ratio of the 

region with refractive index εa to the area enclosed with dashed red square. In our 

simulations, this is approximated by the interpolation of sub-grid points to the Yee mesh, 

the assignment of their values according to the original fiber geometry, and the 

calculation of their average. The accuracy of such approximation depends on the 

interpolation factor Γ, which is a positive even integer that specifies how many additional 

sub-grid points are used. For example, when Γ = 10 (N), 9 (N-1) additional points are 

assigned in between the original grid points, the refractive index profile of the area with 

11-by-11 (2N+1)-by-(2N+1) points centered around the original grid point is averaged and 

assigned to the grid point. 

 

 

 

  

Figure 4-5: Schematic of staircase approximation for curved interface and index-averaging 

Top: stair-case approximation of curved interface: only two levels of values are used and the 

approximation depends on the resolution of grids. Bottom-left: The area enclosed by the 

dashed red line is considered for index-averaging. With index-averaging, thanks to the use 

of more levels of values, even with low resolution, the curved surface is well represented in 

simulations, as show on the bottom-right. 
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Other advanced techniques deal with the boundary conditions. Other than conventional 

Dirichlet, Neumann and mixed boundary conditions, for example, the perfectly matched 

layer (PML) has been proposed (Berenger, 1994) and widely used. 

Without additional treatment at the boundaries, our FDFD formulation falls in the 

Dirichlet boundary condition with zero-values. Additionally, by setting zero-derivatives at 

the boundaries, we can use the Neumann boundary condition to reduce the calculation 

window according to geometrical symmetry. This is particularly advantageous when 

calculating the fundamental space-filling mode (FSM) of PC claddings. 

 

 

4.5 Spurious Modes and Their Elimination 

 

During our preliminary tests on the vector field formulation, we found that for 

PBG-guiding geometries, very often spurious results ruin the whole simulations as only 

limited sets of eigenvalues and eigenvectors are calculated. This is mainly due to the 

various combinations of hole-guiding modes that result in various eigenvalues, and the 

space close to the edges of the calculation window. In order to remove these spurious 

modes, we propose the following two first techniques and also discuss other two 

possibilities. 

 

 

4.5.1 Post-Computation Correlation 

 

One straightforward method in removing the spurious results is to do it manually after 

obtaining the results. This can also be facilitated automatically by performing correlation 

between the obtained eigenfields and the presumed modal fields. However, no matter 

how this post-computation selection is performed, it requires more eigenvalues to be 

calculated in order to contain desired results other than the excessive spurious results. 

Moreover, it requires additional time for either computational or manual selection. We 

therefore do not consider this a good solution for the problem of spurious modes. 

 

 

4.5.2 Pre-Computation Edge-Cutting 

 

As previously stated, one main type of spurious fields localizes near the boundaries. By 

replacing these spaces with unity refractive index, we can remove this type of spurious 
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results. The advantage of this method is that it requires only little pre-treatment in setting 

up the refractive index geometry. The problem with this method is that the simulation 

might not seem physical, especially when only part of the fiber geometry is included in 

the simulation. The schematic for edge-cutting is shown in Figure 4-6. 

 

 

 

Figure 4-6: Permittivity profile of a three-ring PCF with edge-cutting 

In this case, the silica outside the photonic crystal cladding is replaced by air. Since the field 

of the fundamental guiding mode does not extend outside the photonic crystal cladding, the 

geometry with edge-cutting can be still be regarded physical. 

 

 

4.5.3 In-Computation Eigen Solver Specifications 

 

One additional method is to specify the eigenvalues to be located during the eigen solving 

process. The MATLAB sparse matrix eigen solver, eigs, seeks eigenvalues with the 

largest/smallest/closest magnitudes/algebraic values/real parts/imaginary parts. For 

index-guiding fiber geometries, looking for eigenvalues with the largest algebraic 

values/magnitude/real parts gives good results. However, for PBG- guiding fiber 

geometries, the largest eigenvalues are often those of the hole-guiding modes because of 

the higher refractive index of the infiltrating material. Therefore, we have to seek 

eigenvalues that are close to and smaller than the refractive index of the PCF host 

material, which is silica in most cases. Unfortunately, eigs does not allow the specification 

to look for only smaller values and therefore introduce spurious results with larger 

eigenvalues. 
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4.5.4 Divergence Maxwell Equations 

 

By taking into account the divergence Maxwell equations, it may be possible to avoid 

some spurious results, as more physical constraints are imposed. From this point of view, 

the vector-field FDFD scheme proposed by Fallahkhair et al., 2008 may be a better choice. 

However, careful studies and comparisons shall be made to come to a solid conclusion. 

 

 

4.6 Implementation of the Scalar-Field FDFD and the Vector-Field FDFD 

 

Both the scalar-field FDFD and the vector-field FDFD are integrated into a single code 

library written in MATLAB and can be found in Appendix A. A simulation console m-file is 

written to incorporate the various function m-files to perform the simulations. A general 

computational flow is as follows: 

1) Input parameters for the fiber and the simulation are assigned in the console m-file. 

2) The geometry_ m-files generate the fiber geometry according to specification and the 

factor of index-averaging. 

3) If index-averaging is desired, the index_avg m-file processes the geometry according 

to mesh configuration. 

4) The next step is to formulate the eigenvalue problem. The sFDFD m-file is for 

scalar-field FDFD, the vFDFDd m-files are for vector-field FDFD with diagonal 

anisotropies, and the vFDFDt m-files are for vector-field FDFD with transverse 

anisotropies. 

5) The computation proceeds to the eigen solving process. The eigensolve m-file uses the 

eigs function in MATLAB, which seeks a defined number of eigenvalues and 

eigenvectors of a specific matrix using ARPACK (Arnoldi Package), and recasts the 

eigenvectors into eigenfields according to the dimension of the eigenvalue problem. 

6) With some additional m-files, the results are arranged, displayed, and saved at the 

end of the console m-file. 

 

 

4.7 Verification and Benchmarking of Proposed Schemes 

 

4.7.1 Methods for Verification 

 

“Are the results correct, or at least relevant?” After the implementation of the numerical 
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schemes, the next problem comes into mind is whether they give good results. We use 

the following three methods to verify our FDFD schemes: 

1) Theoretical verification, 

2) Numerical verification, and 

3) Experimental verification. 

 

1) Theoretical Verification 

The first method is to compare the numerical results with good references, which are 

often analytic results. The idea is to use simple fiber geometries with known analytic 

results to verify the numerical schemes, and then extend the use of the validated 

numerical schemes to more complicated structures where analytic analysis becomes 

extremely difficult -- if not impossible -- because of the problem complexity.  

Modal analysis of step-index fiber geometries, particularly those with small index-contrast, 

can be performed analytically. For more complicated photonic crystal fibers, although the 

analytic expressions are unsolvable, through basis-function expansion approach, one can 

obtain accurate results provided that the photonic crystal structure is not too complicated. 

Sometimes the basis-function expansion approach is regarded semi-analytic and it is 

useful for fiber geometries with periodic structures. Nevertheless, when there exist 

non-circular air holes, for example, the basis-function expansion approach is not 

applicable. Accordingly, it cannot accurately characterize real fiber geometries that are 

manufactured with defects. 

 

2) Numerical Verification 

The next method is numerical verification. As the name suggests, this method lies entirely 

in the simulations themselves. The idea is to perform auto-verification of the numerical 

methods themselves. With this method, not only the numerical schemes (theory, 

formulation) themselves are accounted, but also the simulation conditions. The most 

important results of this verification method are the convergence curves. They may be as 

functions of either the step size or the size of the calculation window. Fast and steady 

convergence is expected for a good simulation scheme, as it represents smaller 

uncertainty of the simulation. On the other hand, although the uncertainty may be 

minimized, we still have no information regarding the error. Similarly, good convergence 

against the size of the calculation window may suggest that our simulation results are 

intrinsic, but does not give any information on whether the intrinsic results are correct. 

 

3) Experimental Verification 

The third method is experimental verification. Intuitively, it appears to be the most 

convincing verification method as the ultimate goal of simulations is to predict what is 
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going to happen in experiments. Therefore, it is worthwhile to take into account the 

experimental verification. However, since the field of PLCFs is still new and awaits further 

studies, it is not easy to control the experimental conditions accurately. This has lots to do 

with the not-so-organized nature of LCs; they are not perfectly crystalline. The molecular 

arrangement of LC inside the host PCF greatly affects the characteristics of the PLCF, but 

with our current experimental means, it is not possible to observe the real configuration 

of LC inside the fiber. As the first approximation, a quasi-planar configuration is often 

assumed for nematic liquid crystals in a PCF without any pre-treatment. This will be 

further discussed in Section 5.3. Consequently, we may use experimental results for 

qualitative verification rather than strict quantitative comparison. 

 

In order to raise the confidence level of our simulations, we test our FDFD schemes with 

various fiber geometries according to the first two verification methods described above. 

A brief introduction on the test fiber geometries is as follows, and will be discussed in 

details respectively in the following sections. 

 

We test the performances of our numerical tools with the following geometries: 

1) Single-Mode Fiber (SMF) 

We first consider a standard single-mode telecommunication fiber (SMF). The diameter 

of a SMF is smaller, and its minimum radius of curvature in structure larger, than a 

typical PCF. As a result, the simulation condition is expected to be less stringent. The 

long wavelength also reduces computational effort. Furthermore, as discussed in 

Chapter 3, when the index-contrast is low, the LP approximation gives good results and 

therefore can be used for comparison. 

2) Multi-Mode Fiber (MMF) 

In a multi-mode fiber, the field patterns of higher-order modes have more rapid 

changes (higher spatial frequency) and are therefore fast-varying with respect to the 

dimension of the fiber structure. The higher-order modes also have larger spatial extent 

and therefore require larger calculation windows. The MMF is expected to pose more 

stringent conditions on the simulations, and is useful in examining the performance of 

the FDFD schemes. 

3) Step-Index Fiber With High Index-Contrast (HC-SIF) 

When the index-contrast is high, the scalar approximation is no longer valid. With an 

HC-SIF, we show the discrepancy between the scalar field and the vector field 

formulations. This fiber geometry, along with the next one, which is the holey fiber, are 

discussed in Zhu and Brown, 2002. Since our vector-field FDFD is based on their work, 

by replicating the results, we can also know whether we are on the right track with the 

numerical schemes. 
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4) Photonic Crystal Fiber (Holey Fiber, HoF) 

Last, a photonic crystal fiber is considered. The HoF has the same type of geometry as 

the host PCF of our PLCF of interest. 

 

 

4.7.2 Single-Mode Fiber (SMF) 

 

Some excerpt from the specification of Corning©  SMF-28™ telecommunication fiber 

(Appendix B) is shown in Table 4-5. 

 

 

Table 4-5: Excerpted parameters of Corning©  SMF-28™ Optical Fiber 

 Core Diameter 8.2μm  

 Refractive Index Difference 0.36 %  

 

 

By defining the refractive index difference as 
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and assuming the cladding to be made of fused silica, with refractive index specified by 

the common Sellmeier equation (Appendix C) 
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(4.33)  

where the Sellmeier coefficients are shown in Table 4-6, we arrive at the SMF for 

benchmarking (Table 4-7). 

 

 

Table 4-6: Sellmeier coefficients for fused silica 

 B1 B2 B3  

 6.96166300E-1 4.07942600E-1 8.97479400E-1  

 C1 (μm2) C2 (μm2) C3 (μm2)  

 4.67914826E-3 1.35120631E-2 9.79340025E+1  
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Table 4-7: The SMF for benchmarking 

 Wavelength 1.55μm  

 Core Diameter 8.2μm  

 Core Refractive Index 1.449504  

 Cladding Refractive Index 1.444304  

 ∆n 0.360035%  

 Normalized Frequency, V 2.038674  

 

 

We first analyze the SMF analytically with the LP approximation. The solutions of 

equations (3.32-33) are obtained by solving the dispersion relation 

 ,
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l    (4.34)  

where u, v are the transverse propagation constants within the core (α) and the cladding 

(κ), respectively, multiplied by the radius of the core (ρ), i.e., 
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where 

 ,222

0

2

mcorenk  

   

.22

0

22

claddingm nk   (4.36)  

J and K are Bessel’s functions of the first and the second kinds, respectively. Furthermore, 

u and v are related by the normalized frequency, V, as in equation (3.48): 

 ,222 Vvu 

     

 (4.37)  

By introducing the b, the normalized propagation constant, to replace u and v, 
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the dispersion relation is recast as 
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With sufficiently small step-size, we can obtain the values of b at which the dispersion 

relation (4.39) is satisfied, and that in turn gives us the effective refractive index (neff) of 

the mode concerned. The dispersion curves with l = 0 and l = 1 are shown in Figure 4-7. 
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Figure 4-7: Dispersion relation curves of the SMF for l = 0 and l = 1 

 

 

We can see that when l = 0 there is one solution for D = 0, but when l = 1 (or l > 1), D is 

always greater than zero. This corresponds to single-mode operation of the optical fiber. 

The corresponding mode is LP01, with neff = 1.446535. This value is calculated with 1E-8 

step size in b and will be taken as the reference for our numerical simulations. We note 

that Marcuse’s approximation formula (4.40) also gives a similar value, 1.446532. 
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We do not discuss the valid digits in Marcuse’s approximation, but rather assume that the 

fourth digit is accountable. 

 

 

Table 4-8: Common FDFD simulation parameters for the SMF 

 
Calculation Window 

(Convergence against Step Size) 
32μm  

 
Step Size 

(Convergence against Window Size) 
0.05μm  

 Index-Averaging Factor (If Applied) 10  
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The results of our FDFD simulations on the SMF are shown in Figure 4-8, Figure 4-9 & 

Figure 4-10, and the common parameters of the simulations are given in Table 4-8. We 

perform convergence analysis with respect to the size of the calculation window and the 

grid step size. 

 

 

 

Figure 4-8: Convergence curves of the SMF with respect to the size of calculation window 

calculated with scalar-field FDFD 

 

 

Figure 4-8 shows that the convergence reaches 1E-6 (0.7ppm) with calculation window 

larger than 32μm. We take this value to perform the convergence analysis with respect to 

the size of steps, without index-averaging (Figure 4-9) and with index-averaging (Figure 

4-10), for both scalar-field and vector-field FDFDs. 

With index-averaging, the convergence reaches the order of 1E-6 (Figure 4-10) with 

number of grids more than 250, while the value without index-averaging is almost 2E-5 

(Figure 4-9). The index-averaging technique improves largely the convergence, especially 

when the resolution is low. At 250 grids, the resolution is 0.128μm, roughly 1/12 the 

wavelength (λ=1.55μm). This criterion, together with the 1E-6 (3.5ppm) convergence, will 

later be considered in our simulations. It should be noted that in most cases, owing to 

limited computational power, such criterions are not quite accessible. 

By comparing the results with the anlytic value (LP01, neff = 1.446535), we obtain the 

errors of our simulations, which is 1E-6 (0.7ppm) for the scalar-field FDFD (1.446534), and 

5E-6 (3.5ppm) for the vector-field FDFD (1.446530). In brief, for the SMF, the analytical 

and numerical values match well to the fifth digit after the decimal point, which 
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corresponds to relative error smaller than 7ppm. 

 

 

 
Figure 4-9: Convergence curves of the SMF with respect to the number of grids 

 

 

We note that in our simulations the E-formulation and the H-formulation do not make a 

difference. In Figure 4-10 the two curves almost overlap with each other. Figure 4-11 

shows the first sixteen eigenfields in our scalar-field simulation, and Figure 4-12 shows the 

two sets of fields of the fundamental modes in our vector-field simulation. 

 



Chapter 4   Finite Difference Methods in Frequency Domain 

 

 

- 49 - 

 
Figure 4-10: Convergence curves of the SMF with respect to the number of grids with 

index-averaging factor 10 

 

 

 

Figure 4-11: Eigenfields (eigenvectors in matrix formulation) of the SMF with the largest 16 

eigenvalues calculated with scalar-field FDFD 

We see that only one physical mode exists, which corresponds to the single-mode operation 

of the fiber. The spurious eigenfields possess mirror symmetry with respect to y=x. This is 

due to the discretization of the grids: each axis is discretized from -N/2 to N/2-1 with unity 

step size, where N is the number of grids. 
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E-formulation (Ex – Ey – Hz) 

 

 

H-formulation (Hx – Hy – Ez) 

 

Figure 4-12: Fundamental eigenfields of the SMF calculated with vector-field FDFD 

With vector-field FDFD, it is possible to obtain information regarding all six fields in two sets. 

 

 

4.7.3 Multi-Mode Fiber (MMF) 

 

Unlike the small core size of a telecommunication SMF, a typical commercial MMF has 

core size around 50 to 62.5μm and is thus larger in size than a SMF for numerical 

simulations. Excessive modes also make them impractical for comparison between 

analytical and numerical analyses. Consequently, a MMF with a smaller V-parameter is 

preferred for numerical tests and benchmarking. By increasing four times the core 

diameter of the SMF described in the previous section, we obtain the MMF for 

benchmarking with V = 8.15 (Table 4-9). 

 

 

Table 4-9: The MMF for benchmarking 

 Wavelength 1.55μm  

 Core Diameter 32.8μm  

 Core Refractive Index 1.449504  

 Cladding Refractive Index 1.444304  

 ∆n 0.360035%  

 Normalized Frequency, V 8.154694  
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Similar to the benchmarking with the SMF, we first perform LP analysis of the MMF 

considered. The results are given in Figure 4-13 and Table 4-10. 

 

 

      
Figure 4-13: Dispersion relation curves of the MMF from l = 0 to l = 6 

 

 

Table 4-10: neff of LPlm modes of the MMF 

 m   

l 
1 2 3  

 0 1.449147 1.447645 1.445121  

 1 1.448600 1.446538 -  

 2 1.447888 1.445312 -  

 3 1.447022 - -  

 4 1.446016 - -  

 5 1.444883 - -  

 6 - - -  
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Table 4-11: Scalar-field FDFD simulation parameters for the MMF 

 
Calculation Window 

(Convergence against Step Size) 
50μm  

 
Step Size 

(Convergence against Window Size) 
0.1μm  

 Index-Averaging Factor (If Applied) 10  

 

 

Next, we also use the scalar-field FDFD to study the convergence with respect to the 

calculation window. The result is shown Figure 4-14. As expected, for higher order modes, 

larger calculation windows are required because the extents of the fields are wider. More 

detailed convergence curves for the first five modes are shown in Figure 4-15. We take a 

moderate calculation window size of 50μm for the convergence analysis with respect to 

the step size. In fact, other than the quantitative convergence curves, we can also 

estimate whether the results are intrinsic by observing the orientation of the l > 0 modes. 

If the modal patterns rotate randomly in simulations, then we can say that the results are 

not affected by the rectangular calculation window. Otherwise the orientation always 

matches the symmetry condition of the simulation, which depends on the calculation 

window and the discretization scheme. 

 

 

 
Figure 4-14: Convergence curves of the MMF with respect to the size of calculation window 

calculated with scalar-field FDFD 
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Figure 4-16 & Figure 4-17 show the normalized convergence curves of the scalar-field 

FDFD, without and with index-averaging, respectively. Contrary to expected, the 

calculations for MMF converge faster than for SMF and reach <1ppm with a lower 

resolution at 200 grids for lower order modes (Figure 4-17). This infers than the 

requirements on simulations not only depend on the wavelength and the complexity of 

modal fields, but also the radius of curvature upon interfaces. We also note that the 

effectiveness of index-averaging is once again verified. In the following simulations, we 

will take index-averaging as a standard process. 

 

 

 
Figure 4-15: More detailed convergence curves with respect to the size of calculation window 

for the first five modes of the MMF calculated with scalar-field FDFD 
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Figure 4-16: Convergence curves of the MMF calculated with scalar-field FDFD and without 

index-averaging 

 

 

 

Figure 4-17: Convergence curves of the MMF calculated with scalar-field FDFD and 

index-averaging factor 10 
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We used the same calculation window size (50μm) for the vector-field simulations but 

found that some modes swap their orders and therefore made the results difficult to 

arrange. Consequently we increase the size of the calculation window to 100μm. Figure 

4-18 shows the corresponding convergence curves of the vector-field simulations. By 

comparing the results to the analytic values, we obtain the errors. The results are 

arranged in Table 4-12 (scalar-field FDFD) and Table 4-13 (vector-field FDFD). 

 

 

Figure 4-18: Convergence curves of the MMF calculated with vector-field FDFD and 

index-averaging factor 10 

 

Table 4-12: Scalar-field FDFD results on neff and errors of the LPlm modes of the MMF 

 m   

l 
1 2 3  

 0 1.449147 (0ppm) 1.447645 (0ppm) 1.445109 (-8ppm)  

 1 1.448600 (0ppm) 1.446537 (-1ppm) -  

 2 1.447888 (0ppm) 1.445309 (-2ppm) -  

 3 1.447022 (0ppm) - -  

 4 1.446015 (-1ppm) - -  

 5 1.444880 (-2ppm) - -  

 6 - - -  
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For lower order modes, the simulation errors are in general of the order of few ppm. 

Other than neff and the number of modes that can be calculatedly analytically, through 

theory we also know that for LPlm modes with l = 0, there exist two degeneracies 

(polarization) while for l > 0, there are four degeneracies (polarization and geometry) 

(Figure 4-19). 

 

 

Table 4-13: Vector-field FDFD results on neff and errors of the LPlm modes of the MMF 

 m   

l 
1 2 3  

 0 1.449146 (-1ppm) 1.447644 (-1ppm) 1.445120 (-1ppm)  

 1 1.448600 (0ppm) 1.446537 (-1ppm) -  

 2 1.447887 (-1ppm) 1.445311 (-1ppm) -  

 3 1.447021 (-1ppm) - -  

 4 1.446015 (-1ppm) - -  

 5 1.444881 (-1ppm) - -  

 6 - - -  

 

 

  

Figure 4-19: Degeneracy of some LPlm modes in a MMF 

 

 

Such degeneracy is observed in our simulations. With the scalar-field FDFD, because the 

polarization of fields is dropped, the degeneracy decreases by a factor of two (Figure 

4-20). With the vector-field FDFD, the results match the theoretical degeneracy (Figure 

4-21). Three two-fold degenerate modes and seven four-fold degenerate modes are 
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observed, which corresponds to results shown in Figure 4-13 and Table 4-10. 

 

 

 
Figure 4-20: Eigenfields with the largest 20 eigenvalues of the MMF calculated with 

scalar-field FDFD 

 

 

 

Figure 4-21: Eigenfields (Ex) with the largest 48 eigenvalues of the MMF calculated with 

vector-field FDFD 
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4.7.4 High Index-Contrast Step-Index Fiber (HC-SIF) 

 

We next consider a step-index fiber (SIF) with high index-contrast. We use the same 

geometry as introduced in Zhu and Brown, 2002. Since we follow a similar formulation in 

our vector-field FDFD scheme, the results obtained verify whether our numerical 

implementation is valid. The fiber geometry is given in Table 4-14. The analytical value of 

the effective refractive index of the fundamental mode is 1.438604 (Zhu and Brown, 

2002). 

 

 

Table 4-14: The HC-SIF for benchmarking 

 Wavelength 1.5μm  

 Core Diameter 6μm  

 Core Refractive Index 1.45  

 Cladding Refractive Index 1.0  

 ∆n 45%  

 Normalized Frequency, V 8.796459  

 

 

Although as previously discussed, the scalar-field formulation with LP approximation is no 

longer valid when the index-contrast is high, we still like to show the results as a 

comparison. Similar to the previous two sections, we perform LP analysis on the HC-SIF 

and obtained the fundamental neff, 1.439051. The error is -0.000453 (>300ppm) when 

compared with the analytical value (1.438604). This shows quantitatively the limit of the 

scalar-field LP approximation. 

Figure 4-22 gives the dispersion curves for l = 0 to l = 10, and Table 4-15 gives neff of the 

modes under the scalar-field LP approximation. We next perform simulations with both 

scalar-field and vector-field FDFDs. The common simulation parameters are shown in 

Table 4-16. 

The resultant fundamental neff is 1.439054 for scalar-field FDFD and 1.438608 for 

vector-field FDFD, each of them more or less corresponds to its analytic counterpart 

(1.439051 and 1.438604, as derived earlier in this section). Calculation window of 12μm, 

as in Zhu and Brown, 2002, is used to ensure that the results are comparable.  
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Figure 4-22: Dispersion relation curves of the HC-SIF from l = 0 to l = 10 

 

 

Table 4-15: neff of the LPlm modes of the HC-SIF 

 m   

l 
1 2 3 4  

 0 1.439055 1.391548 1.302696 1.166173  

 1 1.422075 1.354578 1.242963 1.080239  

 2 1.399494 1.310865 1.174690 -  

 3 1.371369 1.260020 1.097285 -  

 4 1.337574 1.201483 1.011449 -  

 5 1.297841 1.134487 - -  

 6 1.251754 1.058066 - -  

 7 1.198724 - - -  

 8 1.137926 - - -  

 9 1.068203 - - -  

 10 - - - -  
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Table 4-16 Common FDFD simulation parameters for the HC-SIF 

 
Calculation Window 

(Convergence against Step Size) 
12μm  

 
Step Size 

(Convergence against Window Size) 
0.05μm  

 Index-Averaging Factor (If Applied) 10  

 

 

 

Figure 4-23: Convergence curves of the fundamental neff of the HC-SIF with scalar-field FDFD 

(top) and vector-field FDFD (bottom) 

 

 

4.7.5 Holey Fiber (HoF) 

 

The next fiber geometry, a holey PCF, is also after Zhu and Brown, 2002. The geometry is 

as shown in Figure 3-1, with parameters specified in Table 4-17. The results are shown 

and compared with reference values in Figure 4-24 and Table 4-18. 

One concern of the triangular-lattice PCFs is the degeneracy of the fundamental modes. It 

has been shown both theoretically (Steel et al., 2001) and numerically (Koshiba and Saitoh, 

2001) that, although there exists structural difference along the x- and the y- directions, 

the fundamental modes in two orthogonal polarization states are degenerate. Our 

simulation also confirms such degeneracy; the fundamental modes shown in Figure 4-25 

and Figure 4-26 all have neff = 1.42864 when calculated with 800 grids. 
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Table 4-17: The HoF for benchmarking and the FDFD simulation parameters 

 Wavelength 1.5μm  

 Pitch, Λ 2.3μm  

 Diameter, d 0.5μm  

 nsilica 1.45  

 Calculation Window 6Λ = 13.8μm  

 

 

 

Figure 4-24: Convergence curves of the fundamental neff of the HoF with scalar-field FDFD 

(top) and vector-field FDFD (bottom) 

It should be noted that for the vector-field simulations, the results from E-formulation and 

H-formulation overlap each other. 

 

 

Table 4-18: Reference values on fundamental neff of the HoF and our simulation results 

 Reference Approach Result  

 Mogilevtsev et al., 1999 LFM 1.42805  

 Huang and Xu, 1993 FD-BPM 1.42868  

 Lüsse et al., 1994 FDFD 1.42858  

 Zhu and Brown, 2002 FDFD 1.42868  

 Current Work, Scalar-Field FDFD FDFD 1.43026  

 Current Work, Vector-Field FDFD FDFD 1.42864  
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 1st mode       2nd mode 

Figure 4-25: The 1st and 2nd sets of eigenfields in E-formulation (Ex-Ey-Hz) of the HoF 

 

 

  1st mode        2nd mode 

Figure 4-26: The 1st and 2nd sets of eigenfields in H-formulation (Hx-Hy-Ez) of the HoF 
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4.7.6 Summary on Benchmarking of FDFD 

 

The performance with 800 grid points and index-averaging of the FDFDs implemented is 

summarized in Table 4-19. 

 

 

Table 4-19: Benchmarking results of the scalar-field FDFD and the vector-field FDFD 

Mode Reference 
Scalar-Field 

FDFD 

Relative 

Error 

Vector-Field 

FDFD 

Relative 

Error 

Single-Mode 

Fiber 
LP01 1.446535 1.446534 1ppm 1.446530 4ppm 

Multi-Mode 

Fiber 

LP01 1.449147 1.449147 0ppm 1.449146 -1ppm 

LP11 1.448600 1.448600 0ppm 1.448600 0ppm 

LP21 1.447888 1.447888 0ppm 1.447887 -1ppm 

LP02 1.447645 1.447645 0ppm 1.447644 -1ppm 

LP31 1.447022 1.447022 0ppm 1.447021 -1ppm 

LP12 1.446538 1.446537 -1ppm 1.446537 -1ppm 

LP41 1.446016 1.446015 -1ppm 1.446015 -1ppm 

LP22 1.445312 1.445309 -2ppm 1.445311 -1ppm 

LP03 1.445121 1.445109 -8ppm 1.445120 -1ppm 

LP51 1.444883 1.444880 -2ppm 1.444881 -1ppm 

High 

Index-Contrast 

Step-Index Fiber 

Fund. 1.438604 1.439054 313ppm 1.438608 3ppm 

Holey Fiber Fund. 1.42805 1.43026 0.2% 1.42864 413ppm 

 

 

4.8 Summary on Implemented FDFDs 

 

So far we have compared our simulation results with well-known fiber geometries, and 

our FDFD schemes are qualified to give good and consistent results. However, in this 

thesis we emphasize on numerical schemes available for PLCFs, so it is essential to test 

our FDFD schemes with related fiber geometries. Mostly likely due to the newly 

developed concepts of PLCFs, there has not been much work in literature that gives good 

reference values. As a result, we will proceed directly to the PLCF of interest and discuss 

the results in Chapter 5. On the other hand, as proposed in Section 4.7.1, we can still 

perform analysis on convergence curves against the sizes of the grid and the computation 
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window to auto-verify the numerical schemes themselves. Furthermore, thanks to the 

six-fold symmetry of the PCF considered, it may also be interesting to compare the results 

obtained under different numerical configurations for an identical physical structure. 

To sum up, in this chapter we discussed the scalar-field FDFD and the vector-field FDFD 

implemented in this thesis and tested them with some exemplary fiber geometries with 

three verification concepts. We show quantitatively the limitation of the scalar-field 

calculation, its difference to the vector-field calculation, and the errors of the FDFDs 

compared with analytical values. The proposed vector-field FDFD, based on Zhu and 

Brown, 2002, gives good results for the single-mode, multi-mode, and high-contrast 

step-index fiber geometries. When vector-field FDFD is applied, relative error of 3ppm is 

observed for neff of the fundamental mode in HC-SIF. For the holey fiber geometry, the 

result of the vector-field FDFD differs by 6E-4 (413ppm) from that of the localized function 

method. On the other hand, it should be noted the results obtained with scalar-field FDFD 

have larger errors, with 313ppm for HC-SIF and 0.2% for HoF, which are approximately 

100 times and 5 times larger than with vector-field FDFD, respectively. 

Computational power (memory requirement, in particular) appears to be a concern 

regarding the convergence of the simulations. The specification of the computer used for 

the simulations in this chapter can be found in Appendix D. One can always perform the 

benchmarking with more powerful computers, however, from the results in this chapter 

we have gained confidence of the FDFD schemes despite computational limitations. Since 

in this thesis we set an emphasis on PLCFs, it is therefore better to apply our tools to the 

real battlefield. In the next chapter we will discuss the PCF 070124 and the PLCF sample, 

which is PCF 070124 infiltrated with a LC commonly known as 6CHBT. 
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5 Photonic Liquid Crystal Fiber of Interest 
 

 

5.1 Photonic Liquid Crystal Fiber Geometry 

 

The PCF chosen for our studies is PCF 070124, with three rings of air holes, manufactured 

by Maria Curie-Skłodowska University (Uniwersytet Marii Curie-Skłodowskiej, UMCS) in 

Lublin, Poland. The geometry and the optical microscope image of the PLCF are shown in 

Figure 5-1, together with the liquid crystal chosen for infiltration. We choose a 3-ring PCF 

for its smaller transverse extent and thus the possibility to include the entire periodic 

structure in the numerical simulations. 

 

 

 

Figure 5-1: PLCF of interest, showing the three-ring host PCF 070124, the nematic LC, 6CHBT, 

and the optical microscope image 

 

 

5.2 Liquid Crystal for Infiltration 
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6CHBT (also commonly known as 6CPS) is chosen to be the LC for infiltration. The optical 

properties regarding 6CHBT can be found in Schirmer et al., 1997. The chemical structure 

of 6CHBT is shown in Figure 5-1 and the corresponding uniaxial nematic liquid crystal 

(N-LC) model in Figure 5-2. 

 

 

 

Figure 5-2: Uniaxial nematic liquid crystal (N-LC) model 

 

 

5.3 Molecular Arrangements of Liquid Crystals 

 

After infiltrating the liquid crystal molecules into the holes of the host PCF, several possible 

molecular arrangements can be obtained. Figure 5-3 shows some steady-state molecular 

arrangements, after Wolinski et al., 2006, and Figure 5-4 shows variants of molecular 

arrangements which can be obtained under external fields, after Ertman et al., 2009. 

 

 

 

Figure 5-3: Molecular arrangements of LC inside the holes of PCF 

(a) Planar, (b) Radial and (c) Axial 

 



Chapter 5   Photonic Liquid Crystal Fiber of Interest 

 

 

- 67 - 

 

 

Figure 5-4: Variants of molecular arrangements of LC inside the holes of PCF 

 

 

5.4 PLCF Sample Preparation 

 

The sample PLCF consists of two parts: the empty PCF and the LC-infiltrated PLCF, all together 

in the form of a single fiber. The PLCF samples are prepared with respect to the following 

procedures: 

1) An empty PCF with certain length is prepared. 

2) The protective layers on both ends is striped and the end-facets are cleaved. 

3) Light from a laser diode is focused by an objective onto one end-facet of the empty 

PCF. 

4) The other end of the PCF is immersed into LC. 

5) LC molecules infiltrate into the holes by capillary force (Figure 5-5). 

6) The part of the PCF that is infiltrated by LC molecules becomes lossy and therefore the 

infiltration process can be monitored via observation of fiber losses (Figure 5-5). 

7) After infiltration, the PLCF end-facet is cleaved again, and the residual LC molecules on 

the end-facet is removed with proper cleaning. 

 

  



Chapter 5   Photonic Liquid Crystal Fiber of Interest 

 

 

- 68 - 

 

 
Figure 5-5: PCF immersed in LC 

The liquid crystal molecules infiltrate into the PCF with capillary force. The infiltration can be 

monitored as the PCF gets lossy after infiltration. The index-guiding PCF is transformed into 

a PBG-guiding PLCF after infiltration and becomes selective on wavelength. 

 

 

A video clip of the infiltration process can be found in the attached CD of the thesis, under 

the name “LC_Infiltration.mp4”. Figure 5-6 shows some selected frames of the video clip 

tagged with time. Note that the time 00’00 indicates the start of the video, not the 

infiltration process. The LC molecules raise much faster in the beginning, then slow down 

gradually, and finally reach a limit. 
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Figure 5-6: Selected frames from the LC infiltration video clip 

 

  

5.5 Experimental Setup 

 

The experimental setup for measuring the transmission spectra of PLCFs is shown in 

Figure 5-7. A white light source (Ocean Optics Halogen Calibration Light Source 

HL-2000-CAL and HL-2000-CAL-ISP) is focused onto the empty PCF end facet by an 

objective. A probing single-mode fiber (SMF), is then attached in proximity to the PLCF 

end facet and connected to the spectrometer. The signal is analyzed by a fiber optics 

spectrometer (Ocean Optics HR4000) with spectral resolution of around 0.25nm. A Peltier 
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module is used to heat up or cool down the PLCF sample. A Testo 735 precise 

thermometer with 0.05°C resolution and 0.1°C accuracy is used to monitor temperature 

changes. 

 

 

 

Figure 5-7: Experimental setup 

 

 

5.6 Numerical Setup 

 

5.6.1 Refractive Index of Silica 

 

The refractive index of silica is well described by the common Sellmeier equation (4.33) 

with coefficients shown in Table 4-6. However, since we are interested in the behaviors 

with respect to temperature change, we adopt the temperature-dependent two-term 

Sellmeier dispersion relation, 
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(5.1)  

with coefficients from Medhat et al., 2002. One term is due to electric resonance 

absorption and the other term is due to the lattice/ionic resonance absorption, where n is 

the refractive index, λ is the wavelength in μm. A, B, C, D and E are material-dependent 

Sellmeier coefficients. The coefficients are given in Table 5-1, and the corresponding 

dispersion curves of silica are shown in Figure 5-8 and Figure 5-9. The common dispersion 

curve for fused silica is drawn in dashed line, tagged ‘Fused Silica’. 
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Table 5-1: Temperature-dependent Sellmeier coefficients for silica 

 Temperature A B C (μm2) D  

 20°C 1.311382 0.794229 0.010951 0.999525  

 25°C 1.309557 0.796189 0.010936 0.986365  

 29°C 1.308097 0.797703 0.010924 0.975837  

 34°C 1.306272 0.799595 0.010909 0.962676  

 40°C 1.304082 0.801867 0.010891 0.946884  

*E = 100 μm2. (Medhat et al., 2002) 

 

 

Figure 5-8: Temperature dependent dispersion curves of silica 

 

 

 

Figure 5-9: Temperature dependent dispersion curves of silica (zoom in) 

The refractive index of silica (nsilica) rises with temperature. 
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5.6.2 Refractive Index of 6CHBT 

 

The refractive index of liquid crystal is generally described by the Cauchy equation: 
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(5.2)  

However, Schirmer et al., 1997 has measured the refractive index of a mixture of nCHBT 

(nCPS, Figure 5-10), and fitted the experimental data using single band model: 
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(5.3)  

and gave the coefficients as shown in Figure 5-11. 

 

 

 
Figure 5-10: The mixture of nCHBT (nCPS) 

Alkyl chains with n carbon atoms (CnH2n+1) are named R, with n given in the third column. 

 

 

 

 
Figure 5-11: Coefficients for nCHBT (nCPS) mixture with single band model 

After Schirmer et al., 1997. 

 

 

We use the single band model and the corresponding coefficients in our simulations. The 

refractive indices at temperatures between 20°C and 30°C are obtained through 

interpolation. As an example, the ordinary and extraordinary dispersion curves at T=28°C 

are plotted in Figure 5-12. 
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Figure 5-12: Ordinary and extraordinary dispersion curves of 6CHBT at T=28°C 

The ordinary (no) and extraordinary (ne) refractive indices of 6CHBT are larger than that of 

fused silica (nsilica~1.46) over the spectral range of concern. This infers whenever there exist a 

guiding mode in the silica core, it is formed by the PBG-guiding mechanism. 

 

 

5.6.3 Numerical Auto-Verification and Comparison with Experimental Results 

 

Following the idea of numerical verification in Section 4.7.1, we perform auto-verification 

of the numerical scheme with the PLCF of interest and its host PCF structure in the 

following sections. Both scalar-field and vector-field FDFD are considered. The averaged 

refractive index of liquid crystal: 
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(5.4)  

is used in the scalar-field FDFD. For comparison, we also perform simulations on such 

‘isotropic’ PLCF with the vector-field FDFD.  

As there is no good analytical reference for simulations on PLCFs, we also try to compare 

the numerical results with experimental results in additional to the numerical 

auto-verification. We recall that in Section 4.7.1 it is mentioned that owing to the limit of 

experimental means, direct qualitative comparison is not quite accessible. Instead, we 

compare the results qualitatively. What come to our mind that can be easily compared 
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are: 

1) Field intensity distribution, and 

2) Transmission spectrum 

In the next two sections, we will discuss about some characteristics of the empty host PCF 

and the PLCF sample with these bases. 

 

 

5.7 Experimental and Numerical Results for the Host PCF 

5.7.1 Field Intensity Distribution 

 

In FDFD simulations, the first-hand results obtained are the effective refractive index (neff) 

and the modal field distribution, which correspond to the eigenvalue and the eigenfield 

(eigenvector), respectively. With vector-field schemes, it is also possible to obtain 

polarization information regarding the eigenfield and the derived parameters such as 

polarization mode dispersion (PMD, birefringence), polarization extinction ratio and 

dichroic ratio. The eigenfields can be compared with experimental results, although one 

of the problems is that the intensity distribution after propagation in the fiber depends on 

the initial field (input beam profile). 

 

 

 

Figure 5-13: Experimental results on far-field intensity distribution of an empty PCF 070124 
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Figure 5-13 shows some experimental results on far-field intensity distributions of an 

empty PCF 070124, with the same light source but different initial fields tuned by coupling 

conditions. Provided that one can orientate the PCF precisely, with polarimetric elements 

it is also possible to obtain information regarding polarization states of the fields. By 

observing the speckle effect, we find that light fields at the output of the empty PCF 

070124 are spatially coherent. 

We perform vector-field FDFD on the host PCF with the simulation parameters shown in 

Table 5-2. Edge-cutting was performed to reduce spurious results. An exemplary set of 

eigenfields (Ex & Ey) at λ = 555nm is shown in Figure 5-16, and the corresponding 

effective refractive indices of the first six modes are given in Table 5-3. 

As clearly seen, the first two modes are degenerate upon polarizations. To justify the 

simulations, we perform convergence analysis with PCF 070124 and the results are shown 

in Figure 5-14. The more details eigenfield patterns of the first two modes are given in 

Figure 5-17 (E-formulation, Ex-Ey-Hz) and Figure 5-18 (H-formulation, Hx-Hy-Ez). Such 

degeneracy has been reported both theoretically (Steel et al., 2001) and numerically 

(Koshiba and Saitoh, 2001) in literature. 

 

 

Table 5-2: Vector-field FDFD simulation parameters for PCF 070124 and the PLCF sample 

Calculation Window 50μm (x) by 43.75μm (y) 

Grid Size 0.125μm 

Index-Averaging Factor 4 

 

 

Table 5-3: Vector-field FDFD results on neff of the first six modes in PCF 070124 

Mode neff, E-Formulation neff, H-Formulation 

1st 1.461344 1.461344 

2nd 1.461344 1.461344 

3rd 1.460455 1.460455 

4th 1.460450 1.460450 

5th 1.460452 1.460452 

6th 1.460452 1.460452 

 

 

In order to compare the field patterns in experiments and in numerical simulations, we 

sort out the core-guiding modes of the empty PCF from our simulations with more 

eigenvalues calculated. The result for Ex is shown in Figure 5-15. 
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Figure 5-14: Convergence curves of the fundamental neff of PCF 701024 with respect to the 

number of grids calculated with scalar-field FDFD (top) and vector-field FDFD (bottom) 

 

 

 

Figure 5-15: Eigenfields (Ex) of the core-guiding modes of PCF 070124 
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Comparing the experimental and numerical results of field patterns, we can see that the principle 

components of the core-guiding modes often possess the C6 six-fold rotational symmetry. 

 

 

 
↑Ex      Ey↓ 

 
Figure 5-16: Exemplary set of eigenfields of PCF 070124 at λ = 555nm calculated with 

vector-field FDFD (top: Ex, bottom: Ey) 
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  1st mode      2nd mode   

Figure 5-17: The 1st and 2nd sets of eigenfields in E-formulation (Ex-Ey-Hz) of PCF 070124 

 

 

 
  1st mode      2nd mode   

Figure 5-18: The 1st and 2nd sets of eigenfields in H-formulation (Hx-Hy-Ez) of PCF 070124 
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5.7.2 Transmission Spectrum 

 

One characteristic that can be easily measured with our experimental setup is the 

transmission spectrum shown in Figure 5-19. We can see that the transmission spectrum 

of an empty PCF 070124 is continuous. This can be compared numerically if we perform 

suitable simulations over specific range of wavelengths. In our simulations we find that 

similar eigenfield patterns, as shown in Figure 5-16, exist for different wavelengths. This 

coincides with the continuous transmission spectrum in experiments. The fundamental 

neff with respect to wavelength is shown in Figure 5-20. 

 

 

 
Figure 5-19: Experimental results on transmission spectrum of an empty PCF 070124 

The blue line shows the normalized spectrum of the light source together with the probing 

single-mode fiber. The black line shows the normalized spectrum of the empty PCF 070124, 

together with the light source and the probing single-mode fiber. The green shade shows the 

uncertainty of the measurements. We note that the background (blue) and the data (black) 

were not measured simultaneously and there might have been fluctuations in the spectrum 

of the light source. 
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Figure 5-20: Numerical results on fundamental neff vs. wavelength of PCF 070124 

 

5.8 Experimental and Numerical Results for the PLCF Sample 

 

5.8.1 Field Intensity Distribution 

 

First we observe the far-field intensity distribution of the PLCF sample (Figure 5-21). 

 

 

 

Figure 5-21: Experimental result on far-field intensity distribution of the PLCF sample 
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The far-field intensity distribution does not show much information, owing to the lossy 

nature of PLCF. To verify guiding of light by the PLCF but not the whole fiber strand, we 

proceed to near-field intensity distribution in Figure 5-22 under different light levels. It is 

clearly seen that the light is guided within the core when the light level is low. However, 

when the light level is high, more light leaks to the regions outside the photonic crystal 

cladding and is thus guided by the whole fiber strand. One concern that might rise is 

whether this portion of the guided light affects the characteristics of the PLCF. 

 

 

 

Figure 5-22: Experimental results on near-field intensity distribution of the PLCF sample at 

different light levels 

 

 

We perform vector-field FDFD on the PLCF sample with the same simulation parameters 

as shown in Table 5-2, along with the edge-cutting technique to reduce spurious results. 

An exemplary set of eigenfields (Ex, Ey) at λ = 686nm is shown in Figure 5-24. The 

corresponding neff of the first two modes are 1.455222 and 1.455219, which appears to 
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show that the two polarizations are not degenerate. However, the difference is so small 

that we cannot conclude on the degeneracy. 

It is worth to recall here that for the PLCF of interest, the refractive indices (no, ne) of 

6CHBT is larger than that of silica (nsilica). Accordingly, in the simulations for the PLCF 

sample, guiding modes within the silica core are obtained as a result of the PBG-guiding 

mechanism. 

On the other hand, in addition to the core-guiding modes and the cladding modes as seen 

for the empty PCF, some hole-guiding modes are also observed (Figure 5-23). Such 

possibilities of modes further increase the number of spurious results when searching for 

core-guiding modes. As seen in Figure 5-23, the hole-guiding modes are often 

characterized by neff larger than nsilica. Consequently, if we can specify the range of 

eigenvalues to be sought during the eigen solving process, as discussed in Section 4.5.3, 

we can possibly reduce the number of spurious results. 

Another important observation from the eigenfield patterns is that, unlike the 

index-guiding empty PCF 070124, the eigenfield patterns of the PBG-guiding PLCF sample 

change sharply with wavelength, and for some wavelengths, there exist no core-guiding 

modes within the simulation range. The simulation range is the maximum absolute 

difference between the neff calculated and nsilica. It depends largely on the amount of 

spurious results, as will be discuss in the next section. 

 

 

 

Figure 5-23: Types of modes (Ex) of the PLCF sample calculated with vector-field FDFD 
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With vector-field FDFD, the three components of the eigenfields are obtained and shown 

in Figure 5-25 and Figure 5-26. It is worth mentioning here that these are PBG-guiding 

modes and have very different field patterns compared to those of the empty PCF host 

shown in Figure 5-17 and Figure 5-18. 

 

 

 

↑Ex      Ey↓ 

 

Figure 5-24: Exemplary set of eigenfields of the PLCF sample at λ = 686nm with vector-field 

FDFD (top: Ex, bottom: Ey) 
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  1st mode      2nd mode   

Figure 5-25: The 1st and 2nd sets of eigenfields in E-formulation (Ex-Ey-Hz) of the PLCF sample 

 

 

 

  1st mode      2nd mode   

Figure 5-26: The 1st and 2nd sets of eigenfields in H-formulation (Hx-Hy-Ez) of the PLCF sample 
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5.8.2 Transmission Spectrum 

 

The transmission spectrum of the PLCF sample is also measured for comparison with 

numerical results (Figure 5-27). We see that there exist several transmission peaks in the 

spectral range of the light source. Such selectivity on wavelength is characteristic of the 

PBG-guiding mechanism. Figure 5-28 shows the numerical results on fundamental neff vs. 

wavelength of the PLCF sample, with the experimental results on transmission spectrum 

in background for comparison. The simulation is set to seek the first 48 eigenvalues and 

the corresponding eigenfields (eigenvectors). The core-guiding modes of each wavelength 

are then manually inspected and their effective refractive indices are extracted. As 

previously stated, the eigenfield patterns of the PBG-guiding PLCF sample change sharply 

with wavelength, and for some wavelengths, there exist no core-guiding modes within the 

simulation range. In view of the transmission spectrum, this coincides with the discrete 

transmission bands in experiments. The numerical simulation also shows ‘gaps’ in the 

transmission spectrum, but does not match entirely with the experimental results (Figure 

5-28). 

We would like to note the problem of spurious modes. In Figure 5-28 the peach shade 

shows the range of eigenvalues obtained in the simulations. At the nodes of the shade, 

spurious results might have ruined the simulation. However, it is also possible that at and 

close to these nodes various cladding modes and hole-guiding modes exist. As a result, 

the PLCF sample no longer functions as an optical waveguide. 

To verify the results of our simulations, we first perform convergence analysis, and then 

try to extend the range of the simulations. The convergence curves are shown in Figure 

5-29 and Figure 5-30, with respect to number of grids and grid size in λ, respectively. We 

note that the 1st and 2nd core-guiding modes mentioned in the figures are as those shown 

in Figure 5-24. A second note is that because these modes have very close neff, sometimes 

the 1st mode is quasi-x-polarized while sometimes the 2nd mode is quasi-x-polarized. 

When the neff of the two quasi-polarized modes are equal, the modes are degenerate. 

From Figure 5-29 and Figure 5-30 we can see that, with sufficient number of grids, the 

fundamental modes are degenerate. By fitting the curve with respect to the square of grid 

size, we obtain 1.455170 as a reference value for the fundamental neff. Using this 

reference, we see that with 800 grids, the simulation converges to about 1ppm. 
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Figure 5-27: Experimental results on transmission spectrum of the PLCF sample 

The red line shows the normalized spectrum of the light source together with the probing 

single-mode fiber and the empty PCF 070124. The blue line shows the normalized spectrum 

of the PLCF sample, together with the light source, the probing single-mode fiber, and the 

empty PCF 070124. The orange and green shades show the uncertainties of the 

measurements. 

 

 

 

Figure 5-28: Numerical results on fundamental neff vs. wavelength of the PLCF sample 

The eigenvalue range of simulations is shaded in peach. The transmission spectrum is 

normalized to [1.448 1.468] in background for comparison among the transmission peaks 

and the obtained bands of core-guiding modes. 
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Figure 5-29: Convergence curves of the PLCF sample with respect to the number of grids 

calculated with vector-field FDFD 

 

 

 

Figure 5-30: Convergence curve of the PLCF sample with respect to the square of grid size 

calculated with vector-field FDFD 
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5.9 Discussions and Numerical Study of PLCF 

 

In this section we like to discuss some possible properties of PLCF observed in numerical 

simulations. 

 

 

5.9.1 Polarization and Birefringence 

 

With vector-field FDFD, we can easily obtain neff in two orthogonal polarization states, and 

this in turn gives us information on the birefringence and polarization mode dispersion of 

the fiber. Also, for some configurations, hybrid guiding (index-guiding in one polarization 

and PBG-guiding in the other) has been reported (Sun and Chan, 2007; Zografopoulos and 

Kriezis, 2009) and with the vector-field FDFD, it may also be possible to observe the hybrid 

guiding mechanism. 

 

 

5.9.2 Rotation of Liquid Crystals in the Transverse Plane of the PLCF 

 

As discussed in Chapter 4, the vector-field FDFD we implemented is able to take into 

account transverse anisotropies. In the context of the thesis so far, we have not taken 

advantage of this functionality. Instead, we have spent more effort on validating the 

accuracy and effectiveness of the implemented FDFDs. Some previous reports have shown 

the significant tunability of PLCFs with external electric field (Ertman et al., 2009). 

Provided that we can align the liquid crystal molecules within the PLCF from the planar 

configuration (Figure 5-4a) to the transverse configuration (Figure 5-4b), it can be an 

interesting aspect to observe the effects of the rotation of LC molecules in the transverse 

plane. The vector-field FDFD we have implemented is able to simulate this kind of 

configurations of LC. 
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6 Conclusions and Outlook 
 

In this thesis we have shown that, based on two curl Maxwell equations with finite 

difference approximation, together with Yee’s staggered mesh, the photonic bandgap 

guiding mechanism was observed in addition to the index-guiding mechanism for light 

propagation in photonic liquid crystal fibers. 

 

The scalar-field FDFD implemented is based on direct 2nd order finite differences in space, 

and is capable of characterizing relatively simple fiber geometries with fairly accurate 

results. However, we have shown both theoretically and numerically, qualitatively and 

quantitatively, the limit of the scalar-field formulation by comparison with known 

analytical values. On the other hand, the vector-field FDFD implemented is based on 1st 

order finite differences with matrix multiplication, and is capable to deal with more 

complicated fiber geometries. Nevertheless, the size of the eigenvalue problem increases 

largely as the vector nature of fields is considered, and therefore demands significant 

computational effort. 

 

We implemented the vector-field FDFD first proposed by Zhu and Brown, 2002, and 

extended the formulation to include transverse anisotropies. Although through the 

context of this thesis we have not really used such additional feature, but as long as we 

have verified the vector-field FDFD, it can lead to interesting aspects of the dynamic 

studies of PLCFs. 

 

Despite the insufficiency on computational power and time, we have tried to compare the 

numerical results with experimental results. Gaps in the transmission spectrum are 

observed both experimentally and numerically. The discrepancy might have arisen from 

both the experimental and the numerical aspects. Our preliminary observation regarding 

the simulation on PLCFs shows that lack of computational resolution might have led to 

inaccuracies and errors. On the other hand, the experimental results also have to be 

validated, particularly the molecular arrangement of the liquid crystal inside the host PCF. 

 

Although the comparison was carried out in a more qualitative way, it nevertheless 

showed that the effectiveness of the implemented vector-field FDFD scheme. It brought 

excitement, together with more challenges. We have noted that spurious modes 

appeared to be an interesting issue to be understood, but owing to lack of time and 

knowledge, we have only tried a very primitive way to solve the issue, that is to cut away 
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the higher-refractive region outside the photonic crystal cladding. Some improvements 

are gained, but still a lot more are to be pursued. 

 

Now that we have assessed and verified the applicability of FDFDs, the vector-field 

formulation in particular, to model light propagation in PLCFs, the next possible stage of 

work shall be dedicated to comprehensive and rigorous study of numerical results 

regarding PLCF geometries with various computational setups. In this way, more 

information can be obtained for further orientation on possible improvements regarding 

the FDFD schemes. On the experimental side, more precise control over the LC molecular 

configuration and higher quality on the manufacture of PCFs will give more valuable 

information on verification and benchmarking of the numerical schemes. By progressing 

these two aspects of future work, it can be foreseen that in the near future PLCFs can find 

potential applications in the field of optics with numerical design tools that greatly 

facilitate the manufacturing process.  

 

One part of the objective of the thesis is accessibility and efficiency. In the thesis this has 

not been discussed explicitly. If some words are to fall on these two aspects, 

‘unsatisfactory but acceptable’ shall be close. The major simulations were performed on a 

normal laptop. The resolution of the simulation was mostly limited by the software limit 

than the hardware limit. As for the time consumed, depending on the number of 

eigenvalues to be sought, the simulation itself for one single wavelength with highest 

available resolution takes between 5 to 10 minutes with Computer 1 in Appendix D. 

Exporting the results into figures also consumes quite unexpected amount of time. The 

time for simulations for wavelengths over a spectral range depends on the spectral 

resolution. An overnight run is normally required for 1nm spectral resolution. 

 

This thesis sets its focus on finite difference methods in frequency domain. However, we 

have always kept in mind the possible usefulness of beam propagation methods in the 

study of PLCFs. It can be interesting to combine and compare the FDFDs and the BPMs. 

Even if we limit ourselves first to FDFDs, there are still a lot more aspects can be further 

considered in the simulation for PLCFs. For example, the order parameter which accounts 

for the molecular arrangement of liquid crystal, especially when we want to study the 

temperature dependent behaviors of PLCFs. 

 

Last, we like to mention the aspects in view of computer science. Throughout the thesis 

we have tried to set up everything from scratch. We derived from theory the master 

equations for FDFD simulations and implemented the code library in MATLAB. However, 

one thing that we did not step into was the eigen solver. We have only fundamental 
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knowledge regarding the eigs function, which ports in the Arnoldi routine for sparse 

matrix eigen problems. Since the simulations for PLCFs have been shown to be demanding, 

the performance of the FDFD schemes may be improved largely through the study of 

more efficient algorithms, implementations, and parallel computing architectures.
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Appendix A 
 

The implementation including both scalar-field and vector-field FDFDs consists of the 

following functions written as MATLAB® m-files: 

1) eigensolve 

 
% Eigen Solver: eigs, MATLAB interface with ARPACK, Arnoldi Package 
% Recast Eigen Vectors into Eigen Fields 
%  
% Output 
% FF(x, y, eigen index, field index): full eigen field matrix 
% eig_value: eigen values 
% flag_conv: if the eigenvalues are converged, see MATLAB help eigs 
%  
% Input 
% MM: global matrix to be solved 
% n_ev: number of eigen values desired 
% mx, ny: calculation window dimensions 
% n_fields: number of fields that are coupled in the global matrix 
%  
% Example 
%  
% P  |Ex| = beta^2 |Ex|   --> n_field = 2 
%    |Ey|          |Ey|       (P = global matrix, eig_value = beta^2) 
%  
% R  |Ex| =   beta |Ex|   --> n_field = 4 
%    |Ey|          |Ey|       (R = global matrix, eig_value = beta) 
%    |Hx|          |Hx| 
%    |Hy|          |Hy| 
%  
  
function [FF, eig_value, flag_conv] = eigensolve(MM, n_ev, guess, mx, ny, n_fields) 
  nm = ny*mx; 
  options.tol = 1e-7; options.disp = 0; options.isreal = isreal(MM); 
  [eig_vector, eig_value, flag_conv] = eigs(MM, speye(size(MM)), n_ev, guess, options); 
  FF = zeros(ny, mx, n_ev, n_fields); 
  for ii = 1:1:n_ev 
    FF_all = reshape(eig_vector(:,ii),nm,n_fields); 
    for jj = 1:1:n_fields 
      FF(:,:,ii,jj) = reshape(FF_all(:,jj),mx,ny)'; 
    end 
  end 
end 

 

2) epr_nlc.m 

 
function [epr_lc_xx, epr_lc_xy, epr_lc_xz, epr_lc_yx, epr_lc_yy, epr_lc_yz, epr_lc_zx, 
epr_lc_zy, epr_lc_zz] = epr_nlc(no, ne, theta, phi) 
  delta = ne.^2-no.^2; 
  epr_lc_xx = no.^2 + delta.*(sin(theta)).^2.*(cos(phi)).^2; 
  epr_lc_yy = no.^2 + delta.*(sin(theta)).^2.*(sin(phi)).^2; 
  epr_lc_zz = no.^2 + delta.*(cos(theta)).^2; 
  epr_lc_xy = delta.*(sin(theta)).^2*sin(phi).*cos(phi); 
  epr_lc_yx = epr_lc_xy; 
  epr_lc_xz = delta.*sin(theta).*cos(theta).*cos(phi); 
  epr_lc_zx = epr_lc_xz; 
  epr_lc_yz = delta.*sin(theta).*cos(theta).*sin(phi); 
  epr_lc_zy = epr_lc_yz; 
end 

 

3) finite_diff.m 

 
% Finite difference according to Yee mesh and BCs 
%  



Appendix A   MATLAB® Implementation of Finite Difference Methods in Frequency Domain 

 

 

- 93 - 

% bc_e, bc_h: 0 for zero boundary condition (Dirichlet) 
%             1 for Neumann boundary condition on x-boundary (d/dx = 0) 
%             2 for Neumann boundary condition on y-boundary (d/dy = 0) 
%             3 for Neumann boundary condition on x- and y- boundaries 
% e for electric field, h for magnetic field 
%  
  
function [Ux, Uy, Vx, Vy] =  finite_diff(mx, ny, dx, dy, bc_e, bc_h) 
  nm = ny*mx; 
  K1_e1 = 1:1:nm;      L1_e1 = 1:1:nm;      D1_e1 = ones(1,nm); 
  K1_e2 = 1:1:nm;      L1_e2 = 1:1:nm;      D1_e2 = ones(1,nm); 
  K1_e3 = 1:1:nm-1;    L1_e3 = 2:1:nm; 
  K1_e3t= ones(ny,1);  L1_e3t = ones(1,mx); L1_e3t(end) = 0; 
  D1_e3 = reshape((K1_e3t*L1_e3t)',1,nm);   D1_e3 = D1_e3(1:end-1); 
  K1_e4 = 1:1:nm-mx;   L1_e4 = mx+1:1:nm;   D1_e4 = ones(1,nm-mx); 
  K1_h1 = 1:1:nm;      L1_h1 = 1:1:nm;      D1_h1 = ones(1,nm); 
  K1_h2 = 1:1:nm;      L1_h2 = 1:1:nm;      D1_h2 = ones(1,nm); 
  K1_h3 = 2:1:nm;      L1_h3 = 1:1:nm-1;    D1_h3 = D1_e3; 
  K1_h4 = 1+mx:1:nm;   L1_h4 = 1:1:nm-mx;   D1_h4 = ones(1,nm-mx); 
  if (bc_e == 1) 
    D1_e1(mx:mx:nm) = 0; 
  elseif (bc_e == 2) 
    D1_e2(nm-mx+1:nm) = 0; 
  elseif (bc_e == 3) 
    D1_e1(mx:mx:nm) = 0; D1_e2(nm-mx+1:nm) = 0; 
  end 
  if (bc_h == 1) 
    D1_h1(1:mx:nm-mx+1) = 0; 
  elseif (bc_h == 2) 
    D1_h2(1:mx) = 0; 
  elseif (bc_h == 3) 
    D1_h1(1:mx:nm-mx+1) = 0; D1_h2(1:mx) = 0; 
  end 
  Ux = (1/dx)*sparse([K1_e1 K1_e3], [L1_e1 L1_e3], [-1.*D1_e1 D1_e3]); 
  Uy = (1/dx)*sparse([K1_e2 K1_e4], [L1_e2 L1_e4], [-1.*D1_e2 D1_e4]); 
  Vx = (1/dy)*sparse([K1_h1 K1_h3], [L1_h1 L1_h3], [D1_h1 -1.*D1_h3]); 
  Vy = (1/dy)*sparse([K1_h2 K1_h4], [L1_h2 L1_h4], [D1_h2 -1.*D1_h4]); 
end 

 

4) geometry_ {SIF | HoF | HoF3} .m 

 
function Epri = geometry_SIF(mx, dx, ny, dy, epr_1, epr_2, r_core, ia_factor, padding) 
  if (ia_factor == 1) 
    X1 = -mx/2:1:mx/2-1; X1 = X1.*dx; 
    Y1 = -ny/2:1:ny/2-1; Y1 = Y1.*dy; 
    [X2,Y2] = meshgrid(X1,Y1); 
    Epri = ones(ny,mx).*epr_2; 
    Epri((X2.^2+Y2.^2)<=r_core^2) = epr_1; 
  elseif (ia_factor > 1) 
    % Interpolation 
    mxi = (mx+padding.*2).*ia_factor; 
    nyi = (ny+padding.*2).*ia_factor; 
    dxi = dx./ia_factor; 
    dyi = dy./ia_factor; 
    X1i = -mxi/2:1:mxi/2-1; X1i = X1i.*dxi; 
    Y1i = -nyi/2:1:nyi/2-1; Y1i = Y1i.*dyi; 
    [X2i,Y2i] = meshgrid(X1i,Y1i); 
    Epri = ones(nyi,mxi).*epr_2; 
    Epri((X2i.^2+Y2i.^2)<=r_core^2) = epr_1; 
  end 
end 

 
% Generate hexagonal Holey Optical Fiber (HoF) geometry with given 
% parameters 
%  
% mx dx ny dy: number-of-grids and grid-size 
% epr_h: relative permittivity of the host material (e.g. silica) 
% epr_g: relative permittivity of the guest (hole) material (e.g. air) 
% ia_factor: interpolation factor 
% padding: in order to perform index-averaging on the border, additional 
%          padding is required in the interpolation. 
%          For general purposes, set padding = 2. However, for specific 
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%          index-averaging schemes, padding = 1 is enough. 
%  

  
function Epri = geometry_HoF(mx, dx, ny, dy, epr_h, epr_g, pitch, r_air, ia_factor, padding) 
  border = ceil(mx*dx/pitch/2)+2; border = border+mod(border,2); 
  hp = pitch/2; 
  if (ia_factor == 1) 
    X1 = -mx/2:1:mx/2-1; X1 = X1.*dx; 
    Y1 = -ny/2:1:ny/2-1; Y1 = Y1.*dy; 
    [X2,Y2] = meshgrid(X1,Y1); 
    Epri = ones(ny,mx).*epr_h; 
    for jj = -border:2:border 
      for ii = -border:2:border 
       if (ii~=0 || jj~=0) 
         Epri(((X2-hp*ii).^2+(Y2-hp*sqrt(3)*jj).^2)<=r_air^2) = epr_g; 
       end 
      end 
    end 
    for jj = -border-1:2:border+1 
      for ii = -border-1:2:border+1 
        Epri(((X2-hp*ii).^2+(Y2-hp*sqrt(3)*jj).^2)<=r_air^2) = epr_g; 
      end 
    end 
  elseif (ia_factor > 1) 
    mxi = (mx+padding.*2).*ia_factor; 
    nyi = (ny+padding.*2).*ia_factor; 
    dxi = dx./ia_factor; 
    dyi = dy./ia_factor; 
    X1i = -mxi/2:1:mxi/2-1; X1i = X1i.*dxi; 
    Y1i = -nyi/2:1:nyi/2-1; Y1i = Y1i.*dyi; 
    [X2i,Y2i] = meshgrid(X1i,Y1i); 
    Epri = ones(nyi,mxi).*epr_h; 
    for jj = -border:2:border 
      for ii = -border:2:border 
        if (ii~=0 || jj~=0) 
          Epri(((X2i-hp*ii).^2+(Y2i-hp*sqrt(3)*jj).^2)<=r_air^2) = epr_g; 
        end 
      end 
    end 
    for jj = -border-1:2:border+1 
      for ii = -border-1:2:border+1 
        Epri(((X2i-hp*ii).^2+(Y2i-hp*sqrt(3)*jj).^2)<=r_air^2) = epr_g; 
      end 
    end 
  end 
end 

 
function Epri = geometry_HoF3(mx, dx, ny, dy, epr_h, epr_g, pitch, r_air, ia_factor, padding) 
%   border = ceil(mx*dx/pitch/2)+2; border = border+mod(border,2); 
  border = 6; 
  hp = pitch/2; 
  if (ia_factor == 1) 
    X1 = -mx/2:1:mx/2-1; X1 = X1.*dx; 
    Y1 = -ny/2:1:ny/2-1; Y1 = Y1.*dy; 
    [X2,Y2] = meshgrid(X1,Y1); 
    Epri = ones(ny,mx).*epr_h; 
    Epri(abs(X2)>3.5*pitch|abs(Y2)>3.5*pitch*0.866) = 1; 
    Epri(abs(Y2)>(-1.*sqrt(3).*(X2-3.5.*pitch))) = 1; 
    Epri(abs(Y2)>( 1.*sqrt(3).*(X2+3.5.*pitch))) = 1; 
    for jj = -border+4:2:border-4 
      for ii = -(border-abs(jj)):2:(border-abs(jj)) 
       if (ii~=0 || jj~=0) 
         Epri(((X2-hp*ii).^2+(Y2-hp*sqrt(3)*jj).^2)<=r_air^2) = epr_g; 
       end 
      end 
    end 
    for jj = -border+3:2:border-3 
      for ii = -(border-abs(jj)):2:(border-abs(jj)) 
        Epri(((X2-hp*ii).^2+(Y2-hp*sqrt(3)*jj).^2)<=r_air^2) = epr_g; 
      end 
    end 
  elseif (ia_factor > 1) 
    mxi = (mx+padding.*2).*ia_factor; 
    nyi = (ny+padding.*2).*ia_factor; 
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    dxi = dx./ia_factor; 
    dyi = dy./ia_factor; 
    X1i = -mxi/2:1:mxi/2-1; X1i = X1i.*dxi; 
    Y1i = -nyi/2:1:nyi/2-1; Y1i = Y1i.*dyi; 
    [X2i,Y2i] = meshgrid(X1i,Y1i); 
    Epri = ones(nyi,mxi).*epr_h; 
    Epri(abs(X2i)>3.5*pitch|abs(Y2i)>3.5*pitch*0.866) = 1; 
    Epri(abs(Y2i)>(-1.*sqrt(3).*(X2i-3.5.*pitch))) = 1; 
    Epri(abs(Y2i)>( 1.*sqrt(3).*(X2i+3.5.*pitch))) = 1; 
    for jj = -border+4:2:border-4 
      for ii = -(border-abs(jj)):2:(border-abs(jj)) 
        if (ii~=0 || jj~=0) 
          Epri(((X2i-hp*ii).^2+(Y2i-hp*sqrt(3)*jj).^2)<=r_air^2) = epr_g; 
        end 
      end 
    end 
    for jj = -border+3:2:border-3 
      for ii = -(border-abs(jj)):2:(border-abs(jj)) 
        Epri(((X2i-hp*ii).^2+(Y2i-hp*sqrt(3)*jj).^2)<=r_air^2) = epr_g; 
      end 
    end 
  end 
end 

 

5) index_avg.m 

 
% Perform index averaging according to specified mesh configuration 
%  
% Epr_in: input permittivity map 
% mx, ny: output size of the permittivity map 
% ia_factor: interpolation factor 
% padding: in order to perform index-averaging on the border, additional 
%          padding is required in the interpolation. 
%          For general purposes, set padding = 2. However, for specific 
%          index-averaging schemes, padding = 1 is enough. 
% pos_x, pos_y: relative positions in the mesh configuration 
%  

     

%  
% 1) If we attach eps_z(k,l) to Ez with (pos_x, pos_y) = (0,0) 
%    Then 
%      eps_x(k,l), attached to Dx/Ex, will have (pos_x, pos_y) = (1,0) 
%      eps_y(k,l), attached to Dy/Ey, will have (pos_x, pos_y) = (0,1) 
%  
% 2) If we attach eps_z(k,l) to Hz with (pos_x, pos_y) = (0,0) 
%    Then 
%      eps_x(k,l), attached to Dx/Ex, will have (pos_x, pos_y) = (0,-1) 
%      eps_y(k,l), attached to Dy/Ey, will have (pos_x, pos_y) = (-1,0) 
%  
  
function Epr_out = index_avg(Epr_in, mx, ny, ia_factor, padding, pos_x, pos_y) 
  if (ia_factor==1) 
    Epr_out = Epr_in; 
  elseif (ia_factor>1) 
    Epr_out = zeros(ny,mx); 
    hf = ia_factor/2; 
    for iy = 1:1:ny; 
      for ix = 1:1:mx; 
        ya = (iy+padding)*ia_factor + 1 - hf; 
        yb = (iy+padding)*ia_factor + 1 + hf; 
        xa = (ix+padding)*ia_factor + 1 - hf; 
        xb = (ix+padding)*ia_factor + 1 + hf; 
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        Epr_out(iy,ix) = ... 
        sum(sum(Epr_in(ya+hf*pos_y:yb+hf*pos_y,xa+hf*pos_x:xb+hf*pos_x))) ... 
        ./ (2.*hf+1)^2; 
      end 
    end 
  end 
end 

 

6) n6CHBT_v3 {e20 | e30 | o20 | o 30} .m 

 
function n = n6CHBT_v3e20(lambda) 
  lambda_nm0 = 156.7; 
  lambda_nm = lambda.*1000; 
  G = 2.569; 
  n = 1 + G.*1e-5.*lambda_nm.^2.*lambda_nm0.^2 ... 
      ./(lambda_nm.^2-lambda_nm0.^2); 
end 

 
function n = n6CHBT_v3e30(lambda) 
  lambda_nm0 = 154.6; 
  lambda_nm = lambda.*1000; 
  G = 2.584; 
  n = 1 + (G.*1e-5.*(lambda_nm.^2).*(lambda_nm0.^2) ... 
      ./(lambda_nm.^2-lambda_nm0.^2)); 
end 

 
function n = n6CHBT_v3o20(lambda) 
  lambda_nm0 = 125.8; 
  lambda_nm = lambda.*1000; 
  G = 3.147; 
  n = 1 + G.*1e-5.*lambda_nm.^2.*lambda_nm0.^2 ... 
      ./(lambda_nm.^2-lambda_nm0.^2); 
end 

 
function n = n6CHBT_v3o30(lambda) 
  lambda_nm0 = 126.8; 
  lambda_nm = lambda.*1000; 
  G = 3.099; 
  n = 1 + G.*1e-5.*lambda_nm.^2.*lambda_nm0.^2 ... 
      ./(lambda_nm.^2-lambda_nm0.^2); 
end 

 

7) nSilica {20 | 25 | 29 | 34 | 40} .m 

 
function n = nSilica20(lambda) 
  A = 1.311382; 
  B = 0.794229; 
  C = 0.010951; 
  D = 0.999525; 
  E = 100; 
  n2 = B.*(lambda.^2)./(lambda.^2-C); 
  n3 = D.*(lambda.^2)./(lambda.^2-E); 
  n = sqrt(A + n2 + n3); 
end 

 
function n = nSilica25(lambda) 
  A = 1.309557; 
  B = 0.796189; 
  C = 0.010936; 
  D = 0.986365; 
  E = 100; 
  n2 = B.*(lambda.^2)./(lambda.^2-C); 
  n3 = D.*(lambda.^2)./(lambda.^2-E); 
  n = sqrt(A + n2 + n3); 
end 
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function n = nSilica29(lambda) 
  A = 1.308097; 
  B = 0.797703; 
  C = 0.010924; 
  D = 0.975837; 
  E = 100; 
  n2 = B.*(lambda.^2)./(lambda.^2-C); 
  n3 = D.*(lambda.^2)./(lambda.^2-E); 
  n = sqrt(A + n2 + n3); 
end 

 
function n = nSilica34(lambda) 
  A = 1.306272; 
  B = 0.799595; 
  C = 0.010909; 
  D = 0.962676; 
  E = 100; 
  n2 = B.*(lambda.^2)./(lambda.^2-C); 
  n3 = D.*(lambda.^2)./(lambda.^2-E); 
  n = sqrt(A + n2 + n3); 
end 

 
function n = nSilica40(lambda) 
  A = 1.304082; 
  B = 0.801867; 
  C = 0.010891; 
  D = 0.946884; 
  E = 100; 
  n2 = B.*(lambda.^2)./(lambda.^2-C); 
  n3 = D.*(lambda.^2)./(lambda.^2-E); 
  n = sqrt(A + n2 + n3); 
end 

 

8) nSi02.m 

 
function n = nSiO2(lambda) 
  a1 = 0.6961663; 
  a2 = 0.4079426; 
  a3 = 0.8974794; 
  b1 = 0.0864043; 
  b2 = 0.1162414; 
  b3 = 9.896161; 
  n1 = a1.*lambda.^2./(lambda.^2-b1.^2); 
  n2 = a2.*lambda.^2./(lambda.^2-b2.^2); 
  n3 = a3.*lambda.^2./(lambda.^2-b3.^2); 
  n = sqrt(1 + n1 + n2 + n3); 
end 

 

9) plot_field.m 

 
% Plot nine eigen fields: 1+offset to 9+offset 
  
function plot_field(fig, X1, Y1, field, row, col, offset) 
  figure(fig); 
  set(gcf, 'Renderer', 'zbuffer'); 
  for ii = 1:1:row*col 
    subplot(row,col,ii); 
    set(gca, 'FontSize', 6); 
    surf(X1,Y1,field(:,:,ii+offset)); 
    grid off; 
    axis equal; colorbar, shading flat, view([0 0 1]); 
    set(colorbar, 'FontSize', 6); 
    xlim([min(X1) max(X1)]), ylim([min(Y1) max(Y1)]); 
  end 
end 
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10) plot_field_png.m 

 
function plot_field_png(pngfile, X1, Y1, field, row, col, offset) 
  h = gcf; 
  set(h, 'Renderer', 'zbuffer'); 
  set(h, 'PaperPositionMode', 'auto'); 
%   set(h, 'PaperPositionMode', 'manual'); 
%   set(h, 'PaperPosition', [100 100 12000 6000]); 
%   set(h, 'Units', 'points'); 
%   set(h, 'PaperUnits', 'points'); 
%   set(h, 'PaperSize', [12200 6200]); 
   
  for ii = 1:1:row*col 
    subplot(row,col,ii); 
    set(gca, 'FontSize', 6); 
    surf(X1,Y1,field(:,:,ii+offset)); 
    axis equal; colorbar, shading flat, view([0 0 1]); 
    set(colorbar, 'FontSize', 6); 
    xlim([min(X1) max(X1)]), ylim([min(Y1) max(Y1)]); 
  end 
  % print(h, '-zbuffer', '-dpng', '-r900', pngfile); 
  % print(h, '-zbuffer', '-dpng', '-r600', pngfile); 
  print(h, '-zbuffer', '-dpng', '-r300', pngfile); 
%   close(h); 
end 

 

11) plot_geometry.m 

 
% Plots permittivity geometry to the assigned figure 
% 
% | Erxx  Erxy  Erxz | 
% | Erxy  Eryy  Eryz | 
% | Erzx  Erzy  Erzz | 
% 
  
function plot_geometry(fig , X1, Y1, Epr_xx, Epr_xy, Epr_xz, Epr_yx, Epr_yy, Epr_yz, Epr_zx, 
Epr_zy, Epr_zz) 
  figure(fig); 
  h = gcf; 
  set(h, 'Renderer', 'zbuffer'); 
   
  subplot(3,3,1); 
  surf(X1,Y1,(Epr_xx)), colorbar, shading flat, view([0 0 1]); 
  title('xx'); xlabel('x (micron)'); ylabel('y (micron)'); 
  axis equal; xlim([min(X1) max(X1)]), ylim([min(Y1) max(Y1)]); 
   
  subplot(3,3,2); 
  surf(X1,Y1,(Epr_xy)), colorbar, shading flat, view([0 0 1]); 
  title('xy'); xlabel('x (micron)'); ylabel('y (micron)'); 
  axis equal; xlim([min(X1) max(X1)]), ylim([min(Y1) max(Y1)]); 
   
  subplot(3,3,3); 
  surf(X1,Y1,(Epr_xz)), colorbar, shading flat, view([0 0 1]); 
  title('xz'); xlabel('x (micron)'); ylabel('y (micron)'); 
  axis equal; xlim([min(X1) max(X1)]), ylim([min(Y1) max(Y1)]); 
   
  subplot(3,3,4); 
  surf(X1,Y1,(Epr_yx)), colorbar, shading flat, view([0 0 1]); 
  title('yx'); xlabel('x (micron)'); ylabel('y (micron)'); 
  axis equal; xlim([min(X1) max(X1)]), ylim([min(Y1) max(Y1)]); 
   
  subplot(3,3,5); 
  surf(X1,Y1,(Epr_yy)), colorbar, shading flat, view([0 0 1]); 
  title('yy'); xlabel('x (micron)'); ylabel('y (micron)'); 
  axis equal; xlim([min(X1) max(X1)]), ylim([min(Y1) max(Y1)]); 
   
  subplot(3,3,6); 
  surf(X1,Y1,(Epr_yz)), colorbar, shading flat, view([0 0 1]); 
  title('yz'); xlabel('x (micron)'); ylabel('y (micron)'); 
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  axis equal; xlim([min(X1) max(X1)]), ylim([min(Y1) max(Y1)]); 
   
  subplot(3,3,7); 
  surf(X1,Y1,(Epr_zx)), colorbar, shading flat, view([0 0 1]); 
  title('zx'); xlabel('x (micron)'); ylabel('y (micron)'); 
  axis equal; xlim([min(X1) max(X1)]), ylim([min(Y1) max(Y1)]); 
   
  subplot(3,3,8); 
  surf(X1,Y1,(Epr_zy)), colorbar, shading flat, view([0 0 1]); 
  title('zy'); xlabel('x (micron)'); ylabel('y (micron)'); 
  axis equal; xlim([min(X1) max(X1)]), ylim([min(Y1) max(Y1)]); 
   
  subplot(3,3,9); 
  surf(X1,Y1,(Epr_zz)), colorbar, shading flat, view([0 0 1]); 
  title('zz'); xlabel('x (micron)'); ylabel('y (micron)'); 
  axis equal; xlim([min(X1) max(X1)]), ylim([min(Y1) max(Y1)]); 
   
end 

 

12) sFDFD.m 

 
% Scalar-Field Finite-Difference Frequency Domain 
% 3-term FD  
  
function M = sFDFD(lambda, mx, ny, dx, dy, Er2) 
  c0 = 299792458e6;             % speed of light (um) 
  w_ang = 2.*pi.*c0./lambda;    % angular frequency 
  
  nm = ny*mx; 
  K1_a = 1:1:nm; L1_a = 1:1:nm; 
  D1_a = ones(ny,mx); 
  D1_a = D1_a.* ((-2/dx.^2) + (-2/dy.^2) + (Er2.*w_ang.^2./c0.^2)); 
  D1_a = reshape(D1_a',1,nm); 
  
  K1_b = 1:1:nm-1; L1_b = 2:1:nm; 
  K1_bt = ones(ny,1); L1_bt = ones(1,mx); L1_bt(end) = 0; 
  D1_b = reshape((K1_bt*L1_bt)', 1 , nm); D1_b = D1_b(1:end-1); 
  
  K1_c = 1:1:nm-mx; L1_c = mx+1:1:nm; 
  D1_c = ones(1,nm-mx); 
  
  M = sparse([K1_a K1_b         K1_b+1       K1_c         K1_c+mx], ... 
             [L1_a L1_b         L1_b-1       L1_c         L1_c-mx], ... 
             [D1_a D1_b./dx.^2  D1_b./dx.^2  D1_c./dy.^2  D1_c./dy.^2]); 
end 

 

13) vFDFD {dP | dQ} .m 

 
% Vector-Field Finite-Difference Frequency Domain 
% Assembly of the Global Matrix 
% Only diagonal anisotropies are taken into account 
%  
%      | Erxx    0     0  | 
% D =  |   0   Eryy    0  | E 
%      |   0     0   Erzz | 
%  
% P  |Ex| = beta^2 |Ex| 
%    |Ey|          |Ey| 
%  
  
function P =  vFDFDdP(lambda, mx, ny, Ux, Uy, Vx, Vy, Epr_xx, Epr_yy, Epr_zz, Epr_xy, Epr_yx) 
  nm = ny*mx;  k0 = 2*pi/lambda;  I2 = speye(nm,nm);  K1_a = 1:1:nm;  
  Erx  = sparse(K1_a, K1_a, reshape(Epr_xx',1,nm)); 
  Ery  = sparse(K1_a, K1_a, reshape(Epr_yy',1,nm)); 
  Erz  = sparse(K1_a, K1_a, reshape(Epr_zz',1,nm)); 
  % Erxy = sparse(K1_a, K1_a, reshape(Epr_xy',1,nm)); 
  % Eryx = sparse(K1_a, K1_a, reshape(Epr_yx',1,nm)); 
  Pxx = (-k0^-2)*Ux*(I2/Erz)*Vy*Vx*Uy ... 
          + (k0^2*I2+Ux*(I2/Erz)*Vx)*(Erx+k0^-2*Vy*Uy); 
  Pxy = Ux*(I2/Erz)*Vy*(Ery+k0^-2*Vx*Ux) ... 
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          - k0^-2*(k0^2*I2+Ux*(I2/Erz)*Vx)*Vy*Ux; 
  Pyy = (-k0^-2)*Uy*(I2/Erz)*Vx*Vy*Ux ... 
          + (k0^2*I2+Uy*(I2/Erz)*Vy)*(Ery+k0^-2*Vx*Ux); 
  Pyx = Uy*(I2/Erz)*Vx*(Erx+k0^-2*Vy*Uy) ... 
          - k0^-2*(k0^2*I2+Uy*(I2/Erz)*Vy)*Vx*Uy; 
  P_1 = cat(2,Pxx,Pxy); 
  P_2 = cat(2,Pyx,Pyy); 
  P = cat(1,P_1,P_2); 
end 

 
% Vector-Field Finite-Difference Frequency Domain 
% Assembly of the Global Matrix 
% Only diagonal anisotropies are taken into account 
%  
%      | Erxx    0     0  | 
% D =  |   0   Eryy    0  | E 
%      |   0     0   Erzz | 
%  
% Q  |Hx| = beta^2 |Hx| 
%    |Hy|          |Hy| 
%  
  
function Q =  vFDFDdQ(lambda, mx, ny, Ux, Uy, Vx, Vy, Epr_xx, Epr_yy, Epr_zz, Epr_xy, Epr_yx) 
  nm = ny*mx;  k0 = 2*pi/lambda;  I2 = speye(nm,nm);  K1_a = 1:1:nm;  
  Erx  = sparse(K1_a, K1_a, reshape(Epr_xx',1,nm)); 
  Ery  = sparse(K1_a, K1_a, reshape(Epr_yy',1,nm)); 
  Erz  = sparse(K1_a, K1_a, reshape(Epr_zz',1,nm)); 
  % Erxy = sparse(K1_a, K1_a, reshape(Epr_xy',1,nm)); 
  % Eryx = sparse(K1_a, K1_a, reshape(Epr_yx',1,nm)); 
  Qxx = (-k0^-2)*Vx*Uy*Ux*(I2/Erz)*Vy ... 
          + (Ery+k0^-2*Vx*Ux)*(k0^2*I2+Uy*(I2/Erz)*Vy); 
  Qxy = -(Ery+k0^-2*Vx*Ux)*Uy*(I2/Erz)*Vx ... 
          + k0^-2*Vx*Uy*(k0^2*I2+Ux*(I2/Erz)*Vx); 
  Qyy = (-k0^-2)*Vy*Ux*Uy*(I2/Erz)*Vx ... 
          + (Erx+k0^-2*Vy*Uy)*(k0^2*I2+Ux*(I2/Erz)*Vx); 
  Qyx = -(Erx+k0^-2*Vy*Uy)*Ux*(I2/Erz)*Vy ... 
          + k0^-2*Vy*Ux*(k0^2*I2+Uy*(I2/Erz)*Vy); 
  Q_1 = cat(2,Qxx,Qxy); 
  Q_2 = cat(2,Qyx,Qyy); 
  Q = cat(1,Q_1,Q_2); 
end 

 

14) vFDFD {tP | tQ} .m 

 
% Vector-Field Finite-Difference Frequency Domain 
% Assembly of the Global Matrix 
% Only diagonal and transverse anisotropies are taken into account 
%  
%      | Erxx  Erxy    0  | 
% D =  | Erxy  Eryy    0  | E 
%      |   0     0   Erzz | 
%  
% P  |Ex| = beta^2 |Ex| 
%    |Ey|          |Ey| 
%  
  
function P =  vFDFDtP(lambda, mx, ny, Ux, Uy, Vx, Vy, Epr_xx, Epr_yy, Epr_zz, Epr_xy, Epr_yx) 
  nm = ny*mx;  k0 = 2*pi/lambda;  I2 = speye(nm,nm);  K1_a = 1:1:nm;  
  Erx  = sparse(K1_a, K1_a, reshape(Epr_xx',1,nm)); 
  Ery  = sparse(K1_a, K1_a, reshape(Epr_yy',1,nm)); 
  Erz  = sparse(K1_a, K1_a, reshape(Epr_zz',1,nm)); 
  Erxy = sparse(K1_a, K1_a, reshape(Epr_xy',1,nm)); 
  Eryx = sparse(K1_a, K1_a, reshape(Epr_yx',1,nm)); 
  Pxx = (-k0^-2)*Ux*(I2/Erz)*Vy*Vx*Uy ... 
          + (k0^2*I2+Ux*(I2/Erz)*Vx)*(Erx+k0^-2*Vy*Uy) ... 
          + Ux*(I2/Erz)*Vy*Eryx; 
  Pxy = Ux*(I2/Erz)*Vy*(Ery+k0^-2*Vx*Ux) ... 
          - k0^-2*(k0^2*I2+Ux*(I2/Erz)*Vx)*Vy*Ux ... 
          + k0^2*Erxy + Ux*(I2/Erz)*Vx*Erxy; 
  Pyy = (-k0^-2)*Uy*(I2/Erz)*Vx*Vy*Ux ... 
          + (k0^2*I2+Uy*(I2/Erz)*Vy)*(Ery+k0^-2*Vx*Ux) ... 
          + Uy*(I2/Erz)*Vx*Erxy; 
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  Pyx = Uy*(I2/Erz)*Vx*(Erx+k0^-2*Vy*Uy) ... 
          - k0^-2*(k0^2*I2+Uy*(I2/Erz)*Vy)*Vx*Uy ... 
          - k0^2*Eryx + Uy*(I2/Erz)*Vy*Eryx; 
  P_1 = cat(2,Pxx,Pxy); 
  P_2 = cat(2,Pyx,Pyy); 
  P = cat(1,P_1,P_2); 
end 

 
% Vector-Field Finite-Difference Frequency Domain 
% Assembly of the Global Matrix 
% Only diagonal and transverse anisotropies are taken into account 
%  
%      | Erxx  Erxy    0  | 
% D =  | Erxy  Eryy    0  | E 
%      |   0     0   Erzz | 
%  
% Q  |Hx| = beta^2 |Hx| 
%    |Hy|          |Hy| 
% 
  
function Q =  vFDFDtQ(lambda, mx, ny, Ux, Uy, Vx, Vy, Epr_xx, Epr_yy, Epr_zz, Epr_xy, Epr_yx) 
  nm = ny*mx;  k0 = 2*pi/lambda;  I2 = speye(nm,nm);  K1_a = 1:1:nm;  
  Erx  = sparse(K1_a, K1_a, reshape(Epr_xx',1,nm)); 
  Ery  = sparse(K1_a, K1_a, reshape(Epr_yy',1,nm)); 
  Erz  = sparse(K1_a, K1_a, reshape(Epr_zz',1,nm)); 
  Erxy = sparse(K1_a, K1_a, reshape(Epr_xy',1,nm)); 
  Eryx = sparse(K1_a, K1_a, reshape(Epr_yx',1,nm)); 
  Qxx = (-k0^-2)*Vx*Uy*Ux*(I2/Erz)*Vy ... 
          + (Ery+k0^-2*Vx*Ux)*(k0^2*I2+Uy*(I2/Erz)*Vy) ... 
          + Eryx*Ux*(I2/Erz)*Vy; 
  Qxy = -(Ery+k0^-2*Vx*Ux)*Uy*(I2/Erz)*Vx ... 
          + k0^-2*Vx*Uy*(k0^2*I2+Ux*(I2/Erz)*Vx) ... 
          - k0^2*Eryx - Eryx*Ux*(I2/Erz)*Vx; 
  Qyy = (-k0^-2)*Vy*Ux*Uy*(I2/Erz)*Vx ... 
          + (Erx+k0^-2*Vy*Uy)*(k0^2*I2+Ux*(I2/Erz)*Vx) ... 
          + Erxy*Uy*(I2/Erz)*Vx; 
  Qyx = -(Erx+k0^-2*Vy*Uy)*Ux*(I2/Erz)*Vy ... 
          + k0^-2*Vy*Ux*(k0^2*I2+Uy*(I2/Erz)*Vy) ... 
          - k0^2*Erxy - Erxy*Uy*(I2/Erz)*Vy; 
  Q_1 = cat(2,Qxx,Qxy); 
  Q_2 = cat(2,Qyx,Qyy); 
  Q = cat(1,Q_1,Q_2); 
end 

 

 

 



Appendix B   Corning® SMF-28™ Optical Fiber 

 

 

- 102 - 

Appendix B 
http://www.photonics.byu.edu/FiberOpticConnectors.parts/images/smf28.pdf 

  

  
    

http://www.photonics.byu.edu/FiberOpticConnectors.parts/images/smf28.pdf
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Appendix C 
http://cvimellesgriot.com/products/Documents/Catalog/Dispersion_Equations.pdf 

 

http://cvimellesgriot.com/products/Documents/Catalog/Dispersion_Equations.pdf
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Appendix D 
 

 

Computer 1 

CPU Intel® Core™ i5 M460 @ 2.53GHz 

RAM 4.00 GB (3.86 GB Available) 

OS Windows 7 Home Premium (64-bit) with Service Pack 1 

MATLAB 7.10.0 (R2010a)   <Student Version> 

EDU>> memory 

Maximum possible array:   2046 MB (2.146e+009 bytes) * 

Memory available for all arrays:  3494 MB (3.664e+009 bytes) ** 

Memory used by MATLAB:   267 MB (2.805e+008 bytes) 

Physical Memory (RAM):   3958 MB (4.150e+009 bytes) 

* Limited by contiguous virtual address space available. 

** Limited by virtual address space available. 

 

 

Computer 2 

CPU Intel® Core™ i7 950 @ 3.07GHz 

RAM 24.0 GB 

OS Windows 7 Professional (64-bit) 

MATLAB 7.12.0.0635 (R2011a) 

EDU>> memory 

Maximum possible array:   59142 MB (6.201e+010 bytes) * 

Memory available for all arrays:  59142 MB (6.201e+010 bytes) * 

Memory used by MATLAB:   436 MB (4.570e+008 bytes) 

Physical Memory (RAM):   24574 MB (2.577e+010 bytes) 

*  Limited by System Memory (physical + swap file) available. 

 

 

For Computer 1, when 48 eigenvalues are set to be sought, the maximum number of grid 

points allowed for vector-field simulation is approximately 350-by-350, limited mainly by 

the contiguous virtual address space available (32-bit allocation). For Computer 2, under 

the same setting, the maximum number is approximately 1200-by-1200, limited by 

system memory. 
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