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Streszczenie

Wtékna swiattowodowe, o coraz bardziej wyszukanych parametrach i geometriach, wcigz znajdujg
wiele nowych zastosowan praktycznych w nauce i technice, majac przy tym istotny wktad do
rozwoju  wspotczesnej telekomunikacji. Przyktadowo, najnowsze badania prowadzone na
wiasciwosciami krysztatéw fotonicznych pozwolity na wprowadzenie nowatorskich idei i pomystéw
do prac z zakresu optyki Swiattowodowej. Nalezy przy tym zwrdci¢ uwage na podjetg w ostatnich
latach tematyke badan nadswiattowodami fotonicznymi (ang. photonic crystal fibers, PCF), w tym w
szczegolnosci nad takimi, dla ktérych mozliwe jest uzyskanie dynamicznej zmiany ich wiasciwosci
optycznych. Na przyktad, przestrajanie parametrow propagacyjnych moze byé stosunkowo tatwo
uzyskane dzieki zastosowaniu ciektego krysztatu, jako materiatu wypetniajgcego otwory
Swiattowodu fotonicznego. Wytworzone w ten sposéb struktury swiattowodowe, okreslane mianem
fotonicznych swiattowodéw ciektokrystalicznych (ang. photonic liquid crystal fiber, PLCF), spotykajg
sie ze znacznym zainteresowaniem ze strony $rodowiska naukowego. Ich unikatowe wtasciwosci
wynikajg przy tym nie tylko ze specyfiki zastosowanego elementu bazowego, jakim jest swiattowdd
fotoniczny, ale rdwniez z zastosowania ciektych krysztatow, ktérych wtasciwosci optyczne mogg by¢
zmieniane przez czynniki zewnetrzne takie jak temperatura, rozcigganie, cisnienie, pole elektryczne
i/lub magnetyczne. Niestety konieczno$¢ uwzglednienia orientacji molekut ciektego krysztatu oraz
jego niejednorodnosci wewnatrz objetosci rozwazanego Swiattowodu fotonicznego wprowadza
dodatkowe wyzwanie w przypadku opisu teoretycznego jak i badan eksperymentalnych nad
ciektokrystalicznymi swiattowodami fotonicznymi.

Najbardziej znanym i najprostszym modelem stuzagcym do analizy i teoretycznej charakteryzacji
Swiattowoddéw jest opis analityczny uzyskany dla przypadku pola skalarnego i przy zatozeniu
polaryzacji liniowej. Model ten pozwala na dokfadny opis propagacji modéw swiattowodowych dla
wiekszosci typowych swiattowoddéw telekomunikacyjnych, niestety zawodzi on w przypadku bardziej
skomplikowanych i zaawansowanych struktur. W takich przypadkach konieczne okazuje sie
zastosowanie zapisu wektorowego pola elektromagnetycznego fali $wietlnej. Dodatkowo, w
ogblnym przypadku jest bardzo trudne lub wrecz niemozliwe uzyskanie rozwigzan analitycznych dla
propagacji $wiatta w krysztatach fotonicznych. Na szczescie, dzieki statemu rozwojowi w dziedzinie
informatyki i fizyki komputerowej, zaproponowanych zostato wiele schematéw numerycznych, ktére
mogtyby zostaé zastosowane do charakteryzacji swiattowoddw mikrostrukturalnych.

Niniejsza praca dotyczy w szczegdlnosci opracowania skutecznych metod numerycznych stuzgcych
do opisu propagacji Swiatta w ciektokrystalicznych swiattowodach fotonicznych przy wykorzystaniu
dostepnych zasobdéw sprzetowych. W szczegdlnosci, sformutowane zostaty opisy teoretyczne
zarowno dla pola skalarnego jak i wektorowego, a nastepnie odpowiednie schematy opisu
propagacji modow Swiattowodowych zostaty zaimplementowane numerycznie przy zastosowaniu
metod réznic skoriczonych. W poréwnaniu do wartosci uzyskanych analitycznie dla swiattowodu
skokowego o duzym kontrascie wspotczynnikdw zatamania, bfad wzgledny wprowadzany przez
zastosowanie pola skalarnego jest niemalze 100 razy wiekszy niz ten uzyskany dla opisu
wektorowego. Zastosowanie tego ostatniego pozwala na uzyskanie btedu wzglednego ~3*10° dla
efektywnego wspodtczynnika zatamania modu podstawowego w Swiattowodzie skokowym o duzym
kontrascie wspotczynnikow zatamania oraz ~4*10" w $wiattowodzie fotonicznym typu Holey-Fiber
(w przypadku propagacji na zasadzie zmodyfikowanego catkowitego wewnetrznego odbicia). W
przypadku symulacji numerycznych przeprowadzonych dla ciektokrystalicznych $wiattowodéw
fotonicznych bfad ten zostat oszacowany na poziomie ponizej 102 i co wiecej przeprowadzone
symulacje potwierdzity istnienie przerw fotonicznych w widmie transmisyjnym (co zostato
zaobserwowane rowniez eksperymentalnie).

Majgc na uwadze uzyskane wyniki, przewiduje sie dalszy rozwdj tematyki poruszonej w niniejszej
pracy, w tym badania eksperymentalne jak i przeprowadzenie dodatkowych symulacji numerycznych,
w celu potwierdzenia wtasciwego dziatania i optymalizacji napisanych skryptéw oraz doktadnosci
przeprowadzanych obliczen. W szczegdlnos$ci zaproponowany i opracowany petno-wektorowy
schemat do wyznaczania modéw Swiattowodowych przy zastosowaniu metody réznic skoriczonych
w dziedzinie czestotliwosci moze by¢ z tatwoscig wykorzystany przy rozwazaniu anizotropii ciektego
krysztatu przy dowolnym obrocie molekut w ptaszczyznie poprzecznej w stosunku do kierunku
propagacji $wiatta (osi swiattowodu).




Summary

Optical fibers have found vast applications in science and technology, and contributed largely to
the infrastructure of telecommunications. Studies on properties of photonic crystals have
infused new ideas and visions into the field of fiber optics. Recently, photonic crystal fibers
(PCFs) with highly tunable optical properties achieved by their infiltration with liquid crystals
(LCs) have gained significant amount of scientific attention.

These particular fiber structures are often referred to as photonic liquid crystal fibers (PLCFs).
Their unique characteristics not only result from specific properties of the structure of host PCFs,
but also from the highly tunable optical properties of LCs. Such tunability can be achieved by
applying external factors like temperature, strain, pressure, electric or/and magnetic fields.
However, owing to their quasi-crystalline, non-uniform nature, LCs introduce further challenges
in theoretical, numerical and experimental characterization of PLCFs.

Conventionally, the most well-known and the simplest model for optical fiber characterization is
the analytical scalar-field formulation with linearly polarized field approximation. It provides
fairly straightforward and accurate characterization of practical telecommunication fibers, but
fails for more complicated fiber geometries (e.g. with high contrast on refractive index). In such
case the vector-field formulation is required. Moreover, when photonic crystal structures are
incorporated, analytical solutions are difficult to obtain, if not impossible. Thanks to the
advance of computer science and computational physics, various types of numerical schemes
have been proposed to characterize optical fibers with micro-structures.

In this thesis, we focus on numerical methods for the characterization of PLCFs with accessible
computational effort. More specifically, both the scalar-field scheme and the vector-field
scheme are formulated theoretically and implemented numerically with finite difference
methods (FDFD/FDM). Compared to analytical values, the relative error introduced in the
scalar-field formulation is almost 100 times higher than the vector-field formulation for a high
index-contrast step-index fiber (HC-SIF). When vector-field FDFD is applied, relative error of
3ppm is observed for effective refractive index of the fundamental mode in HC-SIF and 413ppm
in a holey fiber (HoF) with index-guiding geometry. The <0.1% relative errors qualify for
simulations on PLCFs. However, spurious results appear to be a concern when photonic
bandgap (PBG) guiding fiber geometries are considered, as the eigenvalue range of the
simulation is very limited under some conditions. Simulations show the wavelength selectivity
in transmission spectrum, which is correspondingly observed in experiments. Future
examinations on both the experiment and the numerical schemes are required to justify the
simulations and to analyze the discrepancy. In particular, a vector-field FDFD scheme developed
and implemented here can easily take into consideration the anisotropy of LC with arbitrary

rotation in the transverse plane with respect to the propagation axis of the fiber.
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Chapter 1 Introduction

1 Introduction

1.1 Photonic Liquid Crystal Fiber (PLCF)

Photonic crystals (PCs) are a new type of optical materials that has unusual optical
properties and corresponding unprecedented applications. As an analogy to the atomic
bandgap concept for electronic materials, the theory of photonic bandgap (PBG) has been
developed for the optical materials.

Within a photonic bandgap, there is no available light modes (photons) for some
frequency range and therefore the propagation of light is prohibited. A defect state within
the photonic bandgap traps photons with certain combinations of optical frequency and
wave vector. Confinement of light with such structure can therefore lead to the formation
of optical cavities and waveguides, which correspond to three-dimensional (3D) and
two-dimensional (2D) photonic crystal structures, respectively.

Photonic crystal fibers (PCFs) are the special class of 2D photonic crystal structures with
cylindrical symmetry, extended homogeneously over the third dimension -- the axis of
both propagation and symmetry. In addition to PBG guiding, PCFs can also guide light with
the index-guiding mechanism, as conventional optical fibers do. General cross section
(fiber structure or geometry) of PCF can be divided into two regions, the circular core and
the annular cladding. The cladding generally consists of periodic air holes, forming
photonic lattices, while the core region can either consist of solid materials as in
conventional fibers, or remain hollow in some designs with PBG guiding. It is important to
note that PCF geometries are highly flexible and give vast freedom in engineering and
tailoring towards desired optical properties.

Recently, PCFs with highly tunable optical properties that can be relatively easily achieved
by their infiltration with liquid crystals (LCs) have gained significant amount of the
scientific attention. They are often referred to as photonic liquid crystal fibers (PLCFs)
(Wolinski et al., 2006), liquid crystal-photonic crystal fibers (LC-PCFs) (Du et al., 2004), or
liquid crystal-photonic bandgap fibers (Larsen et al., 2003). Their unique characteristics
depend not only on the applied geometry of the PCF host, but also on the highly tunable
optical properties of LC. The latter can be achieved by applying external factors like

temperature, strain, pressure, electric or/and magnetic fields.
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1.2 Motivation

Simple characterization of practical optical fibers (i.e., step-index geometries with small
index-contrast) can be achieved by linearly polarized (LP) approximation under scalar-field
formulation (Gloge, 1971). It enables analytical analysis of the fiber modes in which the
vector fields are decoupled into individual scalar fields. Therefore, the resultant field
distributions are called linearly polarized modes, LP;, where the subscripts I and m
denote the order of the mode.

Although it is simple and accurate for typical telecommunication fibers, the use of the LP
approximation under scalar-field formulation is however very limited. For more general
fiber geometries, it is often not possible to find analytical solutions. Furthermore, even
with a simple step-index geometry, when the index-contrast is large, scalar-field LP
formulation fails to give accurate results because the coupling between vector field
components are no longer negligible.

In order to characterize general fiber geometries, vector field formulation is required.
Solving analytically the Maxwell equations with vector-field formulation is complicated, if
not impossible, especially when complex refractive index profiles are also introduced. An
alternative is to solve the Maxwell equations numerically. Numerical analysis nowadays
has become more and more realistic thanks to powerful computers, whose limits are still
being pushed further and further. They are an useful tool in modern science, and play an
important role in modeling physical problems. As the Chinese saying goes, “to do the job
well, one must first sharpen his tools”, the study of PLCFs can also be facilitated by
introducing and refining numerical methods.

To sum up, the interesting characteristics of PLCFs are worth paying attention. However, it
is difficult, if not impossible, to study PLCFs analytically. Not only the vector nature of light
has to be taken into account for accurate analysis, but also the material anisotropy and
the finite order of LC. Moreover, when LC molecules are infiltrated into a PCF host,
resulting in a PLCF, the boundary interactions are also crucial for accurate analysis. It is

therefore essential to progress the study of PLCFs with the advance of computer science.

1.3 Objectives

The main objective of the thesis is to construct computationally accessible and efficient
numerical schemes that are capable of characterizing general optical fiber geometries,
with an emphasize on photonic liquid crystal fibers.

In this work, finite-difference methods in frequency domain (FDM/FDFD) are proposed to
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study the propagation of light in PLCFs after reviewing related literature, and FDFD is
implemented and carried out all through the thesis. The implemented schemes are

examined with various factors, including comparison with experimental results.

1.4 Organization of the Thesis

The presented thesis consists of six chapters. In Chapter 1 an introduction of the thesis is
given. In Chapter 2 the historical development from optical fibers to PLCFs is shortly
accounted. Chapter 3 describes possible numerical modeling schemes for optical fiber
characterization, among which FDFD methods are chosen in this work. Both scalar-field
and vector-field FDFD schemes are implemented to characterize the PLCFs of interest, and
are discussed in details in Chapter 4. Chapter 5 shows both numerical and experimental
results obtained for the PLCF of interest. In Chapter 6, conclusions are drawn with
discussions, and outlook for future work is presented.
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2 Optical Fibers and Liquid Crystals

In this chapter we introduce briefly the development of PLCFs, which originated from the
concept of microstructured optical fibers (MOFs) and utilization of the specific properties
of liquid crystals.

2.1 Optical Fibers in Telecommunication and Beyond

Electromagnetic waves provide the most reliable, economical and fastest means of
information transfer in today’s communication technologies, which expand from radio
waves, microwaves to infrared and the visible spectra. Historically, Alexander Graham Bell
was known to be the pioneer in using light waves for communication. In 1880 he invented
the photophone which he claimed as “the greatest invention | have ever made, greater
than the telephone.” The schematic of the photophone can be found in Chapter 4 of the
book Fiber Optic Essentials by Thyagarajan and Ghatak, 2007. Nowadays, standard optical
wavelengths for telecommunication are specified at 1310nm and 1550nm, which coincide
with the two low-loss bands of silica. Indeed, the dramatic reduction in transmission loss
made optical fiber communication a practical technology, as accredited by the Nobel Prize
in Physics, 2009 to the laureate Charles K. Kao, “for groundbreaking achievements
concerning the transmission of light in fibers for optical communication.” Along with the
development of semiconductor lasers and detectors, optical fibers are an essential
building block of modern communication infrastructure, and are still burgeoning along
with the growth of Internet.
Other than in telecommunications, where they act as signal carriers, optical fibers also
find their applications in the general fields of optics and photonics. By nature, optical
fibers are suitable for:
a) Long-haul signal transfer
Progress in purifying silica has led to less than 0.2dB/km loss in modern telecom fibers.
If we express this figure in real life, it means that after 10 kilometers of propagation,
the optical power drops only by a factor of two. Such performance is unmatchable for
other existing technologies. Together with fiber amplifiers which enable all-optical
signal transfer over long distances, optical fibers have become the most significant
backbone in telecommunications.
b) Miniaturized optical systems

To compensate the diffraction and to define the propagation direction of light, i.e., to
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guide light in bulk optics, it usually requires various optical components such as lenses
and mirrors. For example, in 1964, Goubau and Christian at Bell Labs proposed a beam
waveguide that consists of a series of lenses (Thyagarajan and Ghatak, 2007). The
focusing of lenses compensates the diffraction of light and therefore limits the spatial
extension of the beam.
A modern optical fiber has diameter around 125 microns, and limits the spatial extent
of light to few tens of microns. Together with the ultra-low loss, an optical fiber guides
light efficiently in terms of the ratio between the longitudinal propagation distance and
the transverse spatial extent.
With an optical fiber, one can easily bring light along almost arbitrary path to desired
locations. Therefore, optical fibers are often advantageous in miniaturizing the size and
the complexity of an optical setup, and moreover provide the setup with additional
flexibility. Fiber optic endoscope (imaging fiber) and beam delivery systems illustrate
such characteristic. In addition, fiber optic miniaturization also finds useful applications
in many interferometric setups.

¢) Nonlinear optics
The magnitude of nonlinear processes depends largely on the intensity of the light field.
Optical fibers with typical core diameters, ranging from a few microns to a few tens of
microns, possess high field intensity for efficient nonlinear processes. The book
Nonlinear Fiber Optics by Agrawal, 2007 best justifies the active role of optical fibers in
the field of nonlinear optics.

d) Various sensing applications
Optical fibers are extremely sensitive to external factors such as stress, strain, and
temperature. For telecom uses, optical fibers are protected with additional polymer
and fabric layers. However, when raw fibers are used, many sensing applications arise.
One application worth mentioning is the high-temperature (up to approx. 2000K)
sensor obtained with the use of sapphire (Al,0s) fibers (Dils, 1983; Shen et al., 1999).

2.2 Microstructures in Optical Fibers

Generally speaking, when optical fibers are addressed, step-index fibers (SIFs), owing to
their vast uses in telecommunications, come naturally into mind. However, possible
manipulation with the fiber geometry gives additional degree of freedom in tailoring the
characteristics of the optical fibers. Microstructured optical fibers (MOFs) are the derived
application of this concept.

It is useful here to make some notes on terminology. Photonic crystal fiber (PCF) is
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another common name to refer to this type of optical fibers because MOFs often contain
periodic PC structures in the cladding region. In literature, sometimes the term PCF is
reserved for PCFs with PBG guiding. In the context of the thesis, we refer to PCFs for their
PC structure. Guiding mechanisms will be specified separately, and that leads to index-
and PBG- guiding PCFs.

.00 3y 0 %
L ¢ L
((1(((('((

LOwm

Figure 2-1: Optical (OM) and scanning electron (SEM) micrographs of PCF structures
A) Endlessly single-mode solid-core PCF; B) Far-field optical pattern produced by [A] when
excited by red and green light; C) Birefringent PCF; D) Small-core (800 nm) PCF with
ultrahigh nonlinearity and zero chromatic dispersion at 560 nm; E) First photonic band gap
fiber; F) Near-field OM of the six-leaved blue mode that appears when [E] is excited by white
light; G) Hollow-core photonic band gap fiber; H) Near-field OM of a red mode; 1)
Hollow-core PCF with a Kagome cladding lattice, guiding white light. (Russell, 2003)

The introduction of microstructures broadens largely the use of optical fibers in nonlinear
optics. One well-known example is the generation of supercontinuum (Dudley et al., 2006).
In addition, recent studies on PCF structures have shown that by confining light in a

sub-micron core, it is possible to extend the zero-dispersion wavelength to the visible
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range (Russell, 2003; Knight et al., 2000). A PCF with close-to-zero chromatic dispersion
over hundreds of nm was also reported (Reeves et al., 2002). Figure 2-1 shows some
examples of PCF structures, excerpted from the review paper by Russell, 2003.

One interesting degree of freedom that comes along with PCF geometries is the air holes
in the cladding region. Filling the air holes with gaseous and liquid media leads to even
more extraordinary properties of PCFs. The concept then was extended to the infiltration
with LCs (Larsen et al., 2003). This thesis sets its focus on the last, PCFs infiltrated with LCs,
which will henceforth be addressed as photonic liquid crystal fibers (PLCFs) (Wolinski et al.,
2006).

Partly borrowed from Knight, 2003, Figure 2-2 shows some PCF designs among which we
target this thesis on the characterization of the structure shown in Figure 2-2c for which
the bandgap-guiding mechanism is possible (depending on the refractive index of LC used

for infiltration).

Pure silica core surrounded by Air-guiding fiber

reduced-index PC cladding

Modified Total Internal
Reflection (Index-guiding)

\ 2D air-glass PC cladding
(Bandgap-guiding)

Hollow-core
Annular Bragg fiber

Bandgap-guiding (n,>n,)
or

Index-guiding (n,<n,) 1D periodic cladding

-

PLCF: n, - Liquid Crystals n, White  Air
Tunable through temperature, strain, pressure, n, Blue  Substrate (silica)
electric or/and magnetic fields n, Red  Guest material

Figure 2-2: Some types of PCF geometries

2.3 Guiding Mechanisms in Optical Fibers

The guiding properties of an optical fiber depend on the cross-sectional refractive index
profile. In the case of conventional fibers, which consist of a higher-index core and a
lower-index cladding, the guidance of light is well explained by its confinement in the

higher refractive index medium of the core.
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On the other hand, studies on photonic crystals have ported new visions into the field of
optical fibers. Yablonovitch, 1993 described in his paper that by periodically arranging the
structure in the scale of the wavelength, one can obtain photonic bandgaps that are
analogous to atomic bandgaps in atomic crystals where the periodicity is in the order of
the wavelength of electron waves. A defect state within such a photonic crystal enables
the confinement of waves with certain frequency and wave vector, as they are forbidden
to propagate in the surrounding photonic crystal (John, 1987).

Normalized frequency wA/c

6 7 8 9 10 1 12
Normalized wave vector along fiber BA

Figure 2-3: Propagation diagrams for A) Single-Mode Fiber and B) Photonic Crystal Fiber
Each shade indicates the number of regions where the light is free to propagate. Above:
Light propagates freely in all three regions, the Ge:silica core, the silica cladding, and the

surrounding air, in the blue-shaded area. In the cyan-shaded area, light is no longer free to
propagate in air as the effective refractive index (ng) of propagation exceeds that of the air.
As we approach to the bottom right, neg further increases such that light also becomes
evanescent in the silica cladding (red-shade area), and eventually no region supports light
propagation when neg reaches cut-off (black-shaded area). Bottom: for a PCF, other than the
continuous bands of areas, there also exist discrete ‘fingers’ which represent the location of
photonic bandgaps of the PC cladding. (Russell, 2003)
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In the following two sections, we use the ‘propagation diagrams’ (Figure 2-3, after Russell,
2003) to illustrate the possible guiding mechanism(s), which are index- and/or PBG-
guiding, in two fiber geometries, a conventional single-mode fiber with germanium-doped
silica core (Ge:silica) and a PCF. The axes of the propagation diagram are the
dimensionless quantities BA and wA/c, where B is the axial wave vector component, A the
inter-hole spacing, and ¢ the speed of light in vacuum. The maximum value of B is set by
kn, where n is the refractive index of the medium in the region (air, silica, Ge:silica or PC)

under consideration.

2.3.1 Index-Guiding

In the index-guiding mechanism, light is localized in areas with higher refractive indices.
Conventional optical fibers belong to this group. Light is sometimes said to be guided by
total internal reflection (TIR) with ray optics, and the discrete existence of modes
explained by constructive interferences with wave optics. In additional, a holey
micro-structured optical fiber with solid core also works under a similar mechanism
known as modified total internal reflection (mTIR) (Russell, 2003).

In Figure 2-3A we see that the diagram is separated into four regions, with the slope of
the boundaries specified by the refractive index of medium, i.e.,

o kg 1

Slope =—= ==,
P pc, kng, n (2.1)

and effective refractive index (n.g) is defined for regions in between these boundaries as

Negt =€=%. (2.2)

When frequency w is fixed, neg increases with B. For light to propagate, it requires that neg
< n, where n is the refractive index of the medium. This infers that for B < kn, light is free
to propagate, and for B > kn, it is evanescent. In a conventional single-mode fiber, the
guiding of light works at points like R, where light is allowed to propagate in the Ge:silica

core but not the silica cladding.

2.3.2 Photonic Bandgap Guiding

In the photonic bandgap guiding mechanism, the guiding of light is possible at points like
P in Figure 2-3b, where light is allowed to propagate in the air- or silica- core but not in
the PC cladding. Hollow-core PCFs (Figure 2-2b) are an example of this; light is confined by

-9-
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the surrounding PC cladding to within the air-core. On the other hand, a PCF can also
propagate light at points like Q in Figure 2-3b with index-guiding (mTIR), where light is
allowed to propagate in silica but not in the PC cladding (Figure 2-2a). Finally, points
located within the full photonic bandgaps in the cyan-shaded area, 2-PC&silica, in Figure
2-3b enable solid-core PBG-guiding. In this case light is allowed to propagate in silica but
not in the PC cladding due to the PBG effect (Figure 2-2c).

2.4 Photonic Liquid Crystal Fibers

Liquid crystal (LC), the fourth state of matter which has properties between those of liquid
and those of solid crystal, was first discovered in 1888 by Austrian botanical physiologist
Friedrich Reinitzer. LCs have found various application in modern technologies, in
particular, liquid crystal displays (LCDs) and also the more general form, spatial light
modulators.

By infiltrating the holes in PCF with liquid crystal, a new type of optical fibers, the
photonic liquid crystal fiber (PLCF) is obtained. An initially index-guiding PCF (Figure 2-2a)
can be converted to a PBG-guiding PLCF (Figure 2-2c). The liquid crystal placed in periodic
holes gives high tunability to PLCFs that can be thermally, electrically, and optically
controlled (Wolinski et al.,, 2006; Lee et al.,, 2010), and brings various potential
applications to the field of fiber optics. Figure 2-4 shows an example of the tunability of
the PLCF, after Larsen et al., 2003.
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Figure 2-4: A PCF filled with short-pitch chiral nematic liquid crystals (N*LC) shows PBG location
sensitivity of 1nm/°C (visible) and 3nm/°C (infrared)
The corresponding images are: a) Green, T=77°C; b) Yellow, T=89°C; c) Off state, T=91°C; d)
Blue, T=94°C. (Larsen et al., 2003)

LCs are anisotropic, and, in most cases, have averaged refractive indices that are higher
than that of silica. When we consider fibers geometries as shown in Figure 2-2c,
PBG-guiding takes place in most cases. However, by changing the glass substrate to higher
refractive index material or choosing LC with lower refractive index, it is also possible to
achieve index-guiding. Furthermore, the refractive index of LC can also be engineered
and/or tuned with temperature so that both index-guiding and PBG-guiding are possible
with the same PLCF (Wolinski et al., 2006).
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3 Numerical Modeling Schemes

In this chapter various numerical schemes for the characterization of optical fibers are
discussed. Related work and publications are reviewed by Chiang, 1994, Scarmozzino et al.,
2000 and Saitoh and Koshiba, 2005. The classification shown in the last paper is adopted
in Section 3.2.

3.1 Theory for Optical Fiber Modeling

3.1.1 Maxwell Equations

The macroscopic Maxwell equations are:

v.-D=p, (3.1)
V-B=0, (3.2)
VXE:—a—B, (3.3)
ot
VxH=J+a—D, (3.4)
ot

= Electric induction,

= Magnetic induction,

= Electric field,

= Magnetic field,

= Charge density,

J = Current density,

and the vector notations are neglected to point out mainly the form of equations. In the
context of this thesis, we focus on non-magnetic (u, = 1, u = uo, B =uoH, where p is the
permeability, up the permeability in vacuum, and pu, the relative permeability), source-free

(p =0, J =0) media. The corresponding reduced equations are:

V-D=0, (3.5)

V-B=0, (3.6)
oH

VXE:—,UOE, (3.7)

VxH =8—D. (3.8)
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3.1.2 Scalar-Field Formulation

When describing optical waveguides, very often Maxwell equations are introduced in the
further reduced form where the vector nature of is dropped and results in the scalar wave
formulation.

For an isotropic medium, within linear regime,
Q = EE = &péy E’ (39)

where € is the permittivity, & the permittivity of vacuum, &, the relative permittivity, and
the underlines indicate the tensor ranks. Assuming that the change in permittivity is
negligible, i.e., € is constant, we have the following relations

V-D=V (g E)=¢¢,(V-E)=0, V-E=0. (3.10)

By performing curl operation on both sides of equation (3.7), we have
O(VxH) 0?

VXVXE=—IL[0 at —ILJOED. (3.11)
With the vector algebra identity
VxVxF =V(V-F)-V-(VF), (3.12)

and equations (3.8-9), we obtain the following equation that contains only the electric

field, E,
2

V(V-E)-V-(VE)=—&.¢, ;—g. (3.13)

2

Equation 3.10 shows that the divergence of E is zero, and therefore
2

VZE = 6.8, ?E. (3.14)
We obtain the wave equation, which relates the spatial derivatives with the temporal
derivatives. Similarly, starting from magnetic fields, we obtain the following differential

equation:
2

V?H = pye,6, —H. (3.15)
A =U,&, at

2 —

In equations (3.14) and (3.15), we see that the field f(x, y, z, t) components, E:Ex-Ey-Ez
and H:Hx-Hy-Hz, in each equation can be decoupled as there is no coupling among them.
The scalar-field formulation is thus sufficient, and hence in the following we drop the
first-rank tensor notation of the E- and H- fields. Additionally, we assume certain time and

space dependence of the fields in the optical fibers, i.e.,

F(xy.2,t)=F(x, y)exp[i(B - ant)]|= F; expli(Bz — at)) (3.16)
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where F can be either the electric field/induction (E, D) or the magnetic field/induction (H,
B), and the T subscript denotes the transverse component of the field, known as the
modes. The coefficients in the exponential terms are referred to as the propagation
constant (B) and angular frequency (w). In this thesis we focus on frequency domain
analysis, therefore the angular frequency is fixed and denoted as wy. Accordingly, we
reduce the z- and t- derivatives of the fields as follows:

0 . 0?

a:—|a)0’ ?:—w(?’ (3.17)
and

o . 0° 2

— =i, —=-p". 3.18

0z P oz° P (3.18)

Equation (3.14) becomes
(V$ -p° )ET = —yogogra)ozET : (3.19)

where the common exponential terms are omitted on both sides of the equation, and the
Laplace operator is separated into the transverse and the longitudinal (z-) components,

2 o°
2
V :VT +E. (320)
By introducing
() @, @,
k:?‘):nkoznc—o: rc—o, (3.21)
0 0

where k is the wave vector, ¢ the speed of light in the material considered, ¢, the speed of

light in vacuum, n the refractive index, and

1 o ue 1
0%0 = 3 3.22
V Ho€g Cé ( )

together with some rearrangement, we rewrite equation (3.19) in the following form:

Cy =

(V2 +k2¢, JE, = B°E, (3.23)

One can immediate identify equation (3.23) as an eigenvalue problem. Such problem can
be solved by the scalar-field finite difference methods in frequency domain (FDFD) later
discussed in Section 4.1. In our scalar-field FDFD formulation, the transverse Laplace
operator is expanded in the Cartesian coordinate,
0*  0?
V% =y+y, ET =ET (X1 y) (324)

However, the differential equations can be solved analytically by expanding the transverse
Laplace operator in cylindrical coordinates,

10 0 1 o°
Vi==—_|r—|+=>=—, E.=E.(,0), 3.25
T rar( ar) r? 062 r=E(r.0) (3.25)
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which correspond to the cylindrical appearance of typical optical fibers. In this case,
equation (3.23) results in the more familiar form in fiber optics textbooks,
010, 18 e e (r0)= FE.(r.0), (3.26)
o’ ror r?o0* '

With the technique of separation of variables, we have
E; (r,0) = R(r)©(0) (3.27)
and therefore

Kdd—z R(r))@)(@) += ( R(r)j@(@) += R(r)(i ®(6’)J

+k2&,R(r)O(0)|= B7R(r)O(0).

(3.28)

2
Scaling the above equation by Rr_® we have

r.2 d2 1 d2 ) 5
[R(r)(dz ()j ﬁ(_ ”j @(9)(0!92 (Q)J”ﬁ'r} 3,29

ZIBZrZ

and rearrange the formula so that only one variable is on one side of the equation:

r2 d2
{%[d i ()] R )( R(r)j+r (k2e, - B )}

, (3.30)
:—i d > 0(0) |
@)\ do
Physically, we know that ©(0) is 2rt-periodic:
1 (d°
-— Q@) |=1?, leN. 3.31
@(9)[d92 ( )j < (3.31)
Therefore we can rewrite equation (3.29) into two equations with single variable coupled
byl
r2 d2 2 )
——| —R(r R(r) |- n“(r)+ =1 .32
R(r)(drz()j = ()M()ﬂ J (3.32)
and
dZ
(dez @(9)]+|2®(9) =0. (3.33)

From these two equations we can derive the linearly polarized LP,,, modes (Gloge, 1971).
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We demonstrate the linearly polarized approximation with scalar-field formulation in
order to show the effectiveness and accuracy of finite-difference methods. This will be
discussed in Chapter 4 together with details of our scalar-field FDFD formulation.

3.1.3 Vector-Field Formulation

On the other hand, either the change in refractive index is significant or polarization
properties are to be included, the vector-field formulation has to be introduced.
Accordingly, two vector fields -- each with three scalar components -- are considered, the
electric field E:Ex-Ey-Ez, and the magnetic field H:Hx-Hy-Hz, which are expressed in
Cartesian coordinates. Maxwell equations govern the generation and evolution of all
these fields, with every of them closely related, as well as the electromagnetic properties
of matter, the permittivity € and the permeability u. Consequently, the vector-field
formulation is more complicated than the scalar-field formulation as various cross
coupling terms have to be accounted. However, depending on the permittivity and the
permeability tensors of the material, with proper mathematical treatment, some fields
can still be decoupled.

Again, starting from the curl Maxwell equations (3.7-8), and after dropping the
t-derivative by assuming time dependence exp(iwot), we have:

VxE =—-la,u,H, (3.34)

VxH =iw,D. (3.35)
Considering an anisotropic medium, within linear regime, we have

D=cE=¢¢E (3.36)
Performing curl operation on equation (3.33), we have:

VXVXE:_iwoﬂo(vxﬂ):wggoﬂoig:ikoZEa (3.37)

where some replacements are made according to equations (3.21-22). According to

equation (3.5), with vector algebra identity, we have

V-D=V-l55,E)=5|Ve, | E+epe.(V-E)=0, (3.38)

r

which implies
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Ve,
V.-E=-—=E. (3.39)

I

It should be noted the difference between equations (3.38) and (3.10) in view of vector
algebra. Together with the vector algebra identity (3.12), we have

&
&£

VxVxE:V(VE)—V-(VE):—V( EJ—VZE. (3.40)

r

Combining equations (3.37) and (3.40), we have

Ve,
=-E [+k; &, E=0. (3.41)
&, =

VE+V

In order to compare equation (3.41) with equation (3.23), we also separate the Laplace
operator into longitudinal and transverse components with the help of equations (3.18)
and (3.20), and drop the common exponential term on both sides of the equation. This

results in

Ve,
VIE, +V| —='E, |+ki¢ E, = B°E;. (3.42)
= P frer =

We see that in the above equation, there exist two terms for which the coupling between
fields is possible. One of them is related to the gradient of the permittivity tensor, and the
other is related to material anisotropy. From equation (3.42) we see clearly that either
when the change in refractive index is sharp or the material possesses non-diagonal
anisotropy, the scalar-field LP approximation is no longer valid.

Similarly, performing again curl operation on the magnetic curl equation (3.34), we have

VxVxH =iwe,V x grQ): lwe,V x é‘rE): ia)go(Vgr XE-I—ErVXE) (3.43)
With the vector algebra identity (3.12), we have
VxVxH=V(V-H)-V-(VH)=-V’H. (3.44)

Combining equations (3.34-35) results in

1

E=-
lwe, &,

VxH. (3.45)
Equations (3.43-45) show that

1
~V*H =Ve, x| —VxH |+ 0’ uye H. (3.46)

gr S
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Rearranging the above equation we obtain the magnetic field counterpart of equation
(3.41),

Ve,
VZH+—=x(VxH)+¢kiH =0. (3.47)

I+

Either equation (3.41) or equation (3.47) can be applied as the starting point of the
eigenvalue problem. However, in Chapter 2 of their book, Joannopoulos et al., 2008 stated
that for mathematical convenience, the equation with the magnetic field is preferred for
numerical calculations. In our vector-field FDFD formulation, this is not a concern as
neither is used. Instead, we followed the formulation based only on the two curl
equations proposed by Zhu and Brown, 2002. Details regarding our vector-field FDFD
formulation are discussed in Chapter 4.

In this section, we have theoretically shown the limits of the commonly-known scalar-field
LP approximation for the characterization of optical fibers. The magnitude of differences
between the vector-field formulation and the scalar-field LP approximation are given and
discussed in Section 4.7.

Now that we have reviewed the related theory, which is mostly Maxwell’s
electromagnetism, we proceed to the next part where various numerical schemes are
briefed.

3.2 Overview of Characterization Methods for Microstructured Optical Fibers

We recall that in this section we follow the paper by Saitoh and Koshiba, 2005, where
modeling methods for PCFs are categorized into three types of approaches. They are:

1) Effective-Index Approach,

2) Basis-Function Expansion Approach, and

3) Numerical Approach.
In the following sections, the advantages and disadvantages of each modeling method is
briefed and discussed with an emphasis set on the characterization of PLCFs. It is
encouraged to consult the mentioned paper for further details regarding various
characterization approaches for PCFs. To begin with, we draw a schematic representation
of a triangular-lattice PCF, as shown in Figure 3-1. The defect in the center of the periodic

air holes is referred to as the core, while the PC functions as the cladding.
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Figure 3-1: Schematic of a triangular-lattice PCF
The PCF is characterized by the hole diameter d, the pitch of holes A, and the number of the

rings of holes (e.g., in this plot, there are six rings).

Depending on whether the air holes are infiltrated or not, and then on the refractive index
of the infiltrating material, we can categorize PCF geometries into several different types,

as already shown in Figure 2-2.

3.2.1 Effective Index Approach

In Section 3.1 we discussed briefly the scalar-field LP approximation. Although its use is
limited, it nevertheless gives basic ideas on how light propagates in an optical fiber. In a
standard step-index fiber with core radius p and core and cladding refractive indices ncore
and n¢q, the number of guided modes is determined by the normalized frequency, also
known as the V parameter (Snyder and Love, 1983):
Y :%p,/nfm —ni.- (3.48)

To quantify the requirement for monomode operation in an index-guiding PCF, Birks et al.,
1997 and Knight et al., 1998 extended the use of the V parameter by proposing a simple
scalar model using an effective refractive index for the cladding, Ncades, Which is
determined by the propagation constant of the fundamental space-filling mode (Beswm) of
the PC cladding,

Pesu 2
n =, k=—. 3.49
clad,eff k /1 ( )
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In this sense, one can extend the guiding requirement for the modal propagation constant
B of a conventional step-index fiber to that of a PCF,

I(nsilica > ﬂ > ﬂFSM = knclad,eff . (350)

The propagation constants of the fundamental space-filling modes can be calculated by
solving wave equations within a unit cell of the photonic crystal centered on one of the air
holes with Neumann boundary condition along the axes of symmetry.

3.2.2 Basis-Function Expansion Approach

The effective index approach gives simple and qualitative descriptions of PCFs based on
the extended V parameter. However, it does not give quantitative results for modal
propagation constants nor the dispersion properties of PCFs. These properties strongly
depend on the PCF geometries, which are not accounted in the effective index approach.
Moreover, since a scalar model is used, it is insufficient to describe the properties related
to the polarization of light and material anisotropy.

To extend the scope of characterizations, various vector models using different basis
functions for PCFs have been proposed. One of the most widely used is the plane wave
expansion (PWE) method. As the name suggests, the electromagnetic fields are expanded
according to the plane wave basis. The fiber geometry, i.e. the permittivity profile is
expressed by Fourier series. Other alternative methods are the localized function method
(LFM) and the multipole method (MM).

3.2.3 Numerical Approach

The basis-function expansion approach takes advantage of the simplicity of periodic
structures of a PCF with circular holes, and gives decent information about light
propagation therein. However, for more complicated fiber structures consisting for
example of non-circular hole, as in suspended core fibers, it is no longer applicable.
Moreover, it also fails when applied to optical fibers with longitudinal permittivity
variations, which is in general the case for PLCFs as LCs are not perfectly crystalline.
Numerous direct numerical methods have been proposed to analyze general fiber
structures and can be divided in the following categories:

1) Finite Element Methods (FEM)

2) Boundary Element Methods (BEM)
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3) Beam Propagation Method (BPM)

4) Finite Difference Methods in Frequency Domain (FDM/FDFD)

5) Finite Difference Methods in Time Domain (FDTD)
The numerical approach is what we focus on later throughout the thesis. For the
characterization of PLCFs, we will not go through all the categories in details but rather
focus on and will discuss about FDFD and BPM in the next section.

3.2.4 Choices for PLCF Characterization

To find out what numerical methods are suitable for PLCF characterization, we first have
to know the properties of a common PLCF while keeping in mind the advantages and
disadvantages of the numerical methods. Two important aspects should be mentioned for
the characterization of PLCFs. The first one is the material anisotropy that comes with
liguid crystal. As discussed in Section 3.1.3, the more complicated the permittivity tensor,
the more complex the numerical problem is, as fields are less likely to be decoupled from
each other. The other aspect comes from the geometry of the PCF host. A PCF is larger in
transverse extent compared to conventional single-mode fibers, but meanwhile has
smaller radius of curvatures of changes in the refractive index profile. The former
indicates that a bigger calculation window is necessary, and the latter suggests finer grids
with smaller step size is required. Both aspects pose challenges in the characterization of

PLCFs, and are discussed in the following.

Material Anisotropy

As previously discussed, both material anisotropy and high index-contrast require the use
of vector-field formulation. Moreover, from the material side, when the crystal axes do
not coincide with the axes of the fields (E,, E,, E, Hyx, Hy, H;), the form of the permittivity
tensor also has to be considered. This is further discussed in Sections 4.2-3. There have
been various studies on vector-field FDFDs and BPMs for characterizations of optical
elements ranging from conventional fibers to PCFs and anisotropic waveguides. When the
optical fiber is homogeneous along the propagation (z-) axis, two-dimensional (2D) FDFD
is sufficient, and that was the main focus in literature. When there exists inhomogeneity
along the z-axis, three-dimensional (3D) BPM is often favored. 3D-BPM is also useful in
characterizing fiber optics elements such as couplers. An alternative way to treat the
z-inhomogeneity of a PLCF is to consider 3D-FDFD over a certain period. For example,
recently Ivinskaya et al., 2010 applied 3D-FDFD to characterize photonic nanocavities in

contrast to the time domain methods. The formulation of 2D-FDFD, evening considering
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material anisotropy, is relatively compact, while for 3D-BPM, it is more complicated. This
explains partly why we choose FDFD to be our fundamental numerical tool for the
characterization of PLCFs.

Size of PLCF

Optical fibers are small in size from normal perception. For a typical PCF structure, the
diameter is only of about 100um. However, when compared to the wavelength of light,
this corresponds to about 60A in the telecommunication range and 200A in the visible
range. This is extremely large for finite-difference numerical simulations, as the
computational resolution and window are often specified with respect to wavelength. For
example, 20A-by-20A is regarded as ‘large domain size’ in FDTD. For 2D-FDFD, It has been
reported that A/15 vyields fairly accurate results (Zhu and Brown, 2002). Summing up all
these factors, characterization of PLCF is demanding and therefore numerically expensive
to be performed with time domain methods as extra memory storage for time steps are
required in additional to the discretized spatial domain. Even with frequency domain
methods, the simulation margin is also limited. Finite element methods and boundary
element methods can reduce the number of points needed for the computations, but
more effort is required to consider the vector fields and the material anisotropies.
Fortunately, in most cases, even if only part of the periodic structure of a PCF/PLCF is
considered in simulations, relevant results are obtained, as light is confined within a
certain number of ‘rings’ in the periodic structure. Another advantage that comes with
periodicity is the possibility to apply proper boundary condition that accounts for

repeating cell structures.

To sum up, the reason for choosing FDFD is that the formulation is relatively simple, while
BPM can be implemented to account for longitudinal variation (z-inhomogeneity) of a
PLCF. It should also be noted that, in compliance with the objective of the thesis, FDFD
and BPM are computationally less expensive and efficient, therefore extending their
accessibility to commercial personal computers. The computed modal field distributions
in FDFD can be used as the initial fields for BPM, which shall reduce the propagation
distance and steps required for converged numerical results. In this thesis, more
specifically, FDFD is implemented to study the characteristics of PLCFs. Both scalar-field
and vector-field formulations are implemented for comparison. In the next chapter the
FDFD schemes are described in detail. Figure 3-2 gives an estimate on the computational
effort for an exemplary PLCF geometry with vector-field FDFD. As one can see, the

memory requirement is rather demanding.
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IDEAL case
Wavelength A=15um

A=7pm Step-size dx=A/15=0.1 um
d=3.5pum Hole-pitch A=7pm
Calc. window W =6A=42pum
-> Number of points = 420 * 420

32-bit MATLAB - 2GB
Memory Required for 2D-FDFD Global Matrix = Maximum possible array: 2046 MB
A: 1'5 420*420*2(* 16)*8_Byte = 4.5 GB \Class(bata'rype) Bytes |Supported Operations

single Most math

A=0.75 840*840*2(*16)*4-Byte=9.0GB  wu:
A=0.5 1260*1260*2(*16)*4-Byte = 20.3GB =~

4
8
1

int8, uints 1 Arithmetic and some simple functions
2
4
8

All math

Logical/conditional operations

int16, uintlé Arithmetic and some simple functions

int32, uint32 Arithmetic and some simple functions

int64, inté4 Arithmetic and some simple functions

Figure 3-2: Estimation on 2D-FDFD computational effort for an exemplary PLCF geometry
with two coupling field components
On the top we show an exemplary fiber geometry to be simulated. On the bottom-left we
see that the required memory is large. The numbers in red parentheses specify the form of
anisotropy, followed by the data type for storage. Requirement on memory can be reduced
by using single-precision floating-point numbers than double-precision ones, however, for
example, MATLAB 32-bit does not support single-precision sparse matrix. Simulations for
fibers with photonic crystal structures are demanding. With MATLAB 32-bit, the maximum
number of points allowed is approximately 350 by 350, when 48 eigenvalues are to be

sought for an diagonally anisotropic PLCF.
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4 Finite Difference Methods in Frequency Domain (FDM/ FDFD)

Maxwell equations (3.1-4) relate four vector fields (E, H, D, B) with four derivatives (dx, dy,
0z, dt). The time derivative can be dropped by assuming time dependence exp(-iwot) of
the fields, resulting in direct multiplication of -iwy. This is the basis for frequency domain
methods: only fields of a fixed optical frequency are considered. Assuming field
dependence exp(iBz) along the propagation axis z, the z-derivative is also reduced to
direct multiplication of iB. Such field dependence in z forms the mode theory for
electromagnetic fields propagating within an optical waveguide. A mode is said to have its
field distribution unchanged along the propagation axis. Mathematically, modes are the
possible solutions of wave equations.

The remaining x- and y- derivatives are approximated by finite-difference formulae.
Having all four derivatives deduced, the Maxwell equations are solved numerically with
specific geometry and property of the medium.

The above two paragraphs describe the idea behind FDFD, with also a touch on the mode
theory of optical fibers. Conventionally, as derived in Sections 3.1.2-3, all four Maxwell
equations are involved and result in wave equations where second-order derivatives
appear. The corresponding related work includes Bierwirth et al., 1986, Stern, 1988, Liisse
et al., 1994, and Fallahkhair et al., 2008. On the other hand, Zhu and Brown, 2002 first
proposed a more compact FDFD scheme based on the two curl Maxwell equations and
incorporated Yee’s staggered mesh (Yee, 1966) to study the modal characteristics of MOFs.
Numerous publications followed such FDFD scheme and extended its use to even more
general fiber geometries (Guo et al., 2004; Yu and Chang, 2004; Chen et al., 2009). It is
worth mentioning here that Yee’s staggered mesh has been widely used in FDTD schemes
owing to its effectiveness.

In this chapter, in order to gain some insight on FDFD, we first derive a scalar-field FDFD
scheme based on the wave equations (3.14-15). The numerical results will then be
compared, in particular, with its analytic counterpart given by the scalar-field LP
approximation. Next, we discuss the material anisotropy involved in PLCFs and review
corresponding work in literature. Finally, taking into consideration the computational
accessibility and efficiency, we formulate our vector-field FDFD based on that of Zhu and

Brown, 2002 and extend its use to optical fibers with more general material anisotropy.
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4.1 Scalar-Field FDFD

As derived in Section 3.1.2, combining equations (3.23-24), we obtain the following
scalar-field eigenvalue problem,

o o?

W—i_y—}_kggr E; = 5°E;. (4.1)
One of the possibilities to approximate the second-order derivatives with respect to x and
y are approximated is to use the three-point central finite differences (FDs) as shown in
Figure 4-1. This gives us

2 2
ouU,, B Uiy —2U,, +U, 4, 0 vay B Ux,y+1 2Ule +nyy7l (4.2)
2 2 ’ 2 2 : :
OX AX oy Ay
Central and Non — Central Formula Error Term
() = —f(xi-3)+4f(xs_ilz—if(xi_1)+2f(xi) i_; s
Slx_)=2 flx)+f(x; 1
f”(xi)z i—1 hzl ( L+1] E ]1!2 f(4)
2 f(xp)-5 flxpp1 )44 flxp)-flxg 11
f”(xi) ~ i ( L+1]h2 (xr42)=F(xi43) E n f(4)
F(x) = —lﬂf(xg'—s)+61f(xi—4)—156f(xg'—a)*;zl“f(xz'-z)—154f(xi-1)+45f(xi) 137 44 1©®
12k 180
1y o L) =6 (g _3)+14 F(xp_0)—4 f(xy_1)-15 () +10 f (%341 A3 44 (6)
S (xp) = 1242 180 Wy
1y o =F G216 £ 1)=30 FO)+16 f(xia1 )~ Flxi42) 1 4 26
Jx) = P W
rreey o WS CG_1)=15 £ =4 Flxip1)+14 £lx740)-6 flxp43)+/(x014) 13 4 -(6)
S (xp) = 1242 180 Wy
) = 45 f(x;)—154 f(x;,1)+214 f(xi+2]-1:;6 Flx543)+61 F(x;,4)-10 f(x;,5) 137 e f(ﬁ)
12k 180
rrp oy o =126 /(i 7)+1019 f(x;_g)-3618 F(x;_5)+7380 f(x;_4)=9490 f(x;_3)+7911 f(x;_2)-4014 /(x;_1)+938 f(x}) 363 6 ~8)
S (xp) = 18042 o0 S
() = 11f(—’ci_ﬁ)—%f(xi_s)+324f(xi_4)—670f(xi;;)]-:;ﬁf(xi_z)—456f(xi_l)—'fﬂf(xi)+126f(xi+1) % I f(ﬂ)
) = —2f(xi—5)+15f(xi—4)—54f(xi—3)+85f(xi_:;;rfzﬂf(xi—1)—378f(xi)+214f(xi+1]—11f(xi+2] ﬁ] W e
) = 2f(xi—3)—27f(xi—2)+270f(xi—l)—“il;of,(;iﬁzmf("i+l]—27f(xi+2]+2f(xi+3] 5_;0 4 7O
L) = —11f(xi_z)+214f(xi-1)-373f(xi)+130f(xila;;];rzﬁf(xi+z]—54f(xi+3]+15f(xi+4]-2f(xi+s] ﬁ] W f®
) = 126f(xi_1)—70f(xi)—486f(xi+1]+355f(xi+2l]g—06;20f(xi+3]+324f(xi+4]—9ﬂf(xi+5]+11f(xi+6] % S f®
11y o 9384014 fxpy 1 4 TOUL £ (3749 ) 0490 (x5, 3)+7380 f(x;,.4)-3618 f (7, 5)+1019 f(;4 6)~126 (x4 7) 363 ,6 ~8)
S (%) = 180 2 560 Wy

Figure 4-1: Finite-difference formulae for 2"-order differentiation
The three-term central difference for 2"-order derivative (second formula from the top) is

implemented in our scalar-field FDFD scheme, as derived in Equation (4.2).
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The eigenvalue problem is then discretized as

—2 =2 1 1

1 1
+ (A_yszx,y—l + (A_yszx,yﬂ = ﬂz Ex,y'

We can see that at each point of the mesh grid, E(x,y) is associated with itself and another

(4.3)

four neighboring points. This can be represented in the matrix form as shown in Figure
4-2. In FDFD, such matrix is referred to as the global matrix. The eigenvalues of the global
matrix give access to the effective refractive indices (negs = B/ko) of the modes and the
eigenvectors give the modal field patterns. We note that the full size of the global matrix
is (MxN)?, where M and N grid points are used to represented the fiber geometry in the x-
and y- dimensions, respectively. One can immediately see that in this case the use of
memory is inefficient if full matrix is registered. Fortunately, with the development of
sparse matrix packages, we can reduce significantly the requirement on memory. For
example, in the three-point FD case, the memory required is reduced from (MxN)’ to
(MxN)x5. Given M = N = 100, the reduction factor is already 2000, and further increases
dramatically with the number of grid points used.

More accurate finite-difference schemes for the approximation of second-order
derivatives (Figure 4-1) can be utilized to reduce approximation errors at the cost of a
more complex global matrix. We will validate the accuracy of the three-point scalar-field
FDFD with comparison to the analytic scalar-field LP approximation in Section 4.7. The
MATLAB code implemented for scalar-field FDFD is given in Appendix A. Despite its
simplicity, it is worth mentioning that Riishede et al., 2003 has also applied the scalar-field
FDFD to the modeling of MOFs.

-26-



Chapter 4 Finite Difference Methods in Frequency Domain

1 [==]  (N-Y)xM+ NM

kly x v x v x
11171 1|1 1|1
(2|1 2 12 12
al1i3 13 13
a1 a 14 14
Ll (] [
Ml1M 1M 1M
211 21 21
22 2|2 2|2
z|2 3 2|3 1E
24| 2|4 2|4
I 1] = p2 11
:I:n!ﬂ 2 m| T B* - 2| m
311 31 31
NEE 32 3 2
x 133 3|3 3|3
%3 a 3|4 3|4
11 [l [l
3IMm 3IiMm 3IiMm
T 1l 1l
1 N1 N1
| 2 N2 N|2
2 e e
4 N4 N4
| 11 11
M N M NI M

MN x1 MN x 1

Figure 4-2: Discretized scalar-field eigenvalue problem with corresponding global matrix
In our matrix arrangement ([y, x]; y is the major index and x is the minor index), the
horizontal borders (dashed lines) of the global matrix corresponds to the boundaries in the y

dimension, while the boundaries in the x dimension are colored in red.

4.2 Material Anisotropy in FDFD

In this work we set our focus in the characterization of more general optical fiber
geometries, with an emphasis on PLCFs, therefore we have to consider the anisotropic
properties of liquid crystals. So far some FDFD studies on light propagation in waveguides
with material anisotropy have been reported. For example, Zhu and Brown, 2002
proposed a FDFD scheme for optical fibers that is capable of taking into account the
diagonal anisotropy. Fallahkhair et al., 2008 reported a FDFD scheme that accounts for the
transverse anisotropy in waveguides. Chen et al., 2009 further considered the general
anisotropy and tested their FDFD scheme with an anisotropic waveguide and an LC-core
waveguide. The formulations of Zhu and Brown, 2002 and Chen et al., 2009, as mentioned
in the beginning of this chapter, are based on the curl Maxwell equations, and only the

first-order derivatives are required in the finite-difference scheme. Fallahkhair et al., 2008,
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on the other hand, introduces also the divergence Maxwell equations and require
second-order derivatives in the finite difference scheme.

In the following, we start with the vector-field FDFD proposed by Zhu and Brown, 2002 for
its simplicity and use of Yee’s staggered mesh, which reduces the number of grid points by
a factor of two for a fixed fiber geometry. This is beneficial in the characterization of
structures which are large in size. By introducing some correction terms, we have
extended the FDFD to include transverse material anisotropies.

4.3 Vector-Field FDFD

Starting from equations (3.7-8), along with equations (3.16-17, 19-20), we replace the t-
and z- derivatives of the two curl Maxwell equations and result in the following coupled
equations of the vector-field components,

. oE, .
log o H, :E_WEy
. . oE
lwyu,H, =1PE, —— 4.4
ooy PE o (4.4)
. ok E
loguH, =—>~ %,
ox oy
and
oH, .
—lw,D, = & —1pH,
. oH
—lo,D, =1pH, —— 4.5
0=y ﬁH 8X ( )
oH
—iw,D, = y—aH".
OX oy
To simplify the notations, we introduce the free space impedance Z,
Z,= |22, (4.6)
&y
to replace both ug and gy by
k
a)O/JO = kOZO’ a)ogo = _01 (4'7)
ZO

and result in the following two sets of coupled equations,
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. OE, .
ikoZ,H, = & —ipE,
. . oE
ik.ZH, =i -2 .
0=0""y ﬂEx Gx (4 8)
0
ik,Z,H, =—~ - °E, ,
ox oy
and
1 oH, .
—ik =—2=—i
0 gOZO X ay ﬂHy
. 1 . oH
—ik, D, =ipH, ——* (4.9)
00 a
oH
—ik, ! D =—2 —aHX.

&Z, = OX 0oy
Since in an eigenvalue problem, the magnitude of the eigenfield (eigenvector) does not
have physical meanings, we can further simplify the equations by scaling the electric
field/induction E, D with respect to the magnetic field/induction H, B,
E'=Z£O, D'=Z—[z. (4.10)
This removes Zp and its inverse terms from the coupled equations. Also, for simplicity, we
drop the prime (‘) notations on D and E and arrive at the following equations,

oE

ikoyH, = ayz—i,BEy
. . OE,
ikyH, =ipE, — = (4.11)
oE
ikOHZ:—y—aEX,
ox oy
L1 oH, .
—ik,—D, =—=%—i
080 X ay ﬂl_ly
1 . oH
—iky—D, =ipH, ——+* 4.12
0 . y OX ( )
oH
—|k0iD = y _OH,

g - oXx oy
The finite differences are then incorporated to obtained the x- and y- derivatives. Various
discretization schemes have been proposed among which the staggered mesh proposed
by Yee, 1966 has shown its effectiveness and accuracy. We adopt the Yee mesh
configuration that is shown in Figure 4-3. Discretizing equations (4.11-12) accordingly
leads to
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Figure 4-3: The staggered Yee mesh configuration for the vector-field FDFD implemented
An exemplary boundary for regions with permittivities €, and €, is drawn and the region

with g, is shaded in blue.
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Since we consider non-magnetic materials, the relation between B and H, described by
the permeability y, is readily accounted in the formulation. Next, in order to couple the
sets of equations, (4.4-5) or (4.11-12), we consider the relation between D and E,
described by the permittivity €. We limit ourselves to linear regime where the permittivity
€ is in the form of a second-rank tensor (i.e., a 3-by-3 matrix). In this sense the material
anisotropy falls into four possible forms of permittivity tensors, as shown in Table 4-1.

Table 4-1: Material anisotropy and corresponding permittivity tensor form

a b c d
gr 0 0 gl’,XX O O r,XX r,xy 0 gr,xx r,xy I, Xz
0 ¢ O 0 ¢, O Erp Ery O . Ery Ery
0 0 gr O O gl’,ZZ 0 O gr,zz gl’,ZX gr,zy gl’ 7
Isotropic Diagonally Transversely Arbitrarily
Anisotropic Anisotropic Anisotropic

Each tensor form has different complexity in the numerical problem to be computed, and
apparently, the complexity rises as we proceed from tensor form a to tensor form d.
Tensor forms a-c have global matrices of the same size but different numbers of non-zero
values. Tensor form d, on the other hand, results in a global matrix that is four times as
large. We recall that for tensor form a with small variations in permittivity, scalar-field
formulation is valid and reduces the global matrix to one-quarter the size. Table 4-2 gives
the sizes of the eigenvalue problem and the global matrix for each tensor form. Table 4-3
gives the sparsity of the global matrix and its size for tensor forms a-c, after Fallahkhair et
al., 2008.

The FDFD scheme by Zhu and Brown, 2002 allows the introduction of diagonal
anisotropies (tensor form b). Relative error less than 10 on fundamental Neg Was
reported when tested with a step-index fiber with high index contrast. The analytic value
was used as the reference. Although the work of Fallahkhair et al., 2008 extends to
transverse anisotropies (tensor form c), the formulation is somehow complicated. It also
uses normal grids and thus supposedly more computationally expensive. Chen et al., 2009
extended the work to arbitrary anisotropies, with a similar formulation from that of Zhu
and Brown, 2002, where Yee mesh is also introduced to reduce computational effort.
However, the size of the corresponding eigenvalue problem is quadrupled and thus

computationally demanding.
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Table 4-2: Complexity of FDFD eigenvalue problem and size of FDFD global matrix with

respect to permittivity tensor form

] Size of Global Matrix
Tensor Form Eigenvalue Problem )
(Full Matrix)
a
S{E|H}=4{E|H} S = (M*N)*
(Ae small)
E, P, P.[E, E,
y yX WLy y
b P, Q= (M*N*2)*
_HX QXX Q __HX_ HX_
n }{Q QXy H :'B{H
LY yX L Y Y|
E] [Ar A A AJJE] [E
d R Ey — A21 A22 A23 A24 Ey :IB Ey R=(M*N*4)2
Hol [ A Ar A Ay Hy H,
Hy A A Ag A44__Hy _Hy

Table 4-3: Sparsity of FDFD global matrix with respect to permittivity tensor form

Isotropic Diagonally Anisotropic Transversely Anisotropic
M*N*2*5 M*N*2*9 M*N*2*16

The black squares represent non-zero values, and therefore have to be stored in the sparse

matrix. The fewer the black squares, the higher the matrix sparsity is and hence the less

demanding the memory requirement is. After Fallahkhair et al., 2008.
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Since the thesis targets in analyzing general fiber geometries, one might think it is
straightforward to consider tensor form d with arbitrary permittivity tensor. However,
although optical fibers are of the size of a few tens of microns to few hundreds of microns
and therefore are small from the common perception, they are in fact large in size for
numerical simulations. The full anisotropy scheme, tensor form d, having a global matrix
four times bigger than the other tensor forms a-c, limits its usefulness when the
computational environment is limited.

The FDFD formulation by Zhu and Brown, 2002 is simple and its computation less
demanding. We therefore follow such scheme and will show that by adding cross termes, it
can be extended to include transverse anisotropies.

We come back to the formulation of our vector-field FDFD. We consider media with
transverse material anisotropy and the corresponding permittivity tensor form c,

Dx gr,xx gr,xy 0 Ex
D=|D, |=¢¢,E=¢|¢6, &, 0 [E, | (4.15)
D 0 0 ¢ E

z r,zz z
Equations (4.11-12), together with equation (4.15), can then be written in matrix forms as

H 0o -ig U, [E

X y X
ik H, [=| it 0 —U,|E, (4.16)
H,|] |-U, U, 0 |E,

and
o €y 0 | E, 0 —igl Vv, | H,
—iko| &y &, O | E, |=|1pl 0 -V,|H,| (4.17)
0 0 &, =V, V, 0 | H,
where
-1 1 | -1 1 1
-1 1 -1 °
1 o o 1 ° 1
U = — [ p—
e e . | Uty . (4.18)
-1 1 -1
L _1_ - _1_
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Vx =T ! Vy = (419)

-11 -1 1

are the finite-difference (FD) matrices subjected to how the two-dimensional fields are
arranged into one-dimensional vectors for matrix computation. In our formulation the
field-to-vector assignment is the same as shown in Figure 4-2. The FD matrices also
depend on the boundary conditions specified. Figure 4-4 illustrates two common types of
boundary conditions, which are the Dirichlet and the Neumann boundary conditions.
Values are designated on the Dirichlet boundaries, while derivatives are designated on the
Neumann boundaries. We note that for FD matrices U, and Vy in equations (4.18-19),
there exist zeros in the off-diagonal values which represent the boundaries in x-direction,
similar to the red shades in Figure 4-2. Exemplary FD matrices subjected to different
boundary conditions are given in Table 4-4.

Zero-Derivative (Neuman)

on|r,

Zero-Value (Dirichlet)

Ul =, =0

L

Figure 4-4: Schematic of Dirichlet and Neumann boundary conditions
For both types we use only zero values in our formulations, i.e. the zero-value (the blue
boundaries) and the zero-derivative (the red boundary) boundary conditions. For the
exemplary symmetric field pattern (mode) shown here, it is possible to use only half of the
domain to simulate the whole structure, where the zero-derivative boundary acts as the axis

of symmetry.
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Table 4-4: Exemplary 1*-order finite-difference matrices for different boundary conditions

D Zero-Value Zero-Derivative
Dirichlet Boundary Conditions Neumann Boundary Condition
|J1:2:i3:4:~-iM M+ 2xM+ == (N-1]x M + ENI | ]1:2:i3i4i~-iM M+ 2 x M+ == (N-1)x M+ NI
wl1:1:1:1'-°1:2:2:2:2:-:12:3:3:3:3:_:3 =N N:-iN ¥]1:1:31:1:-°:1:2:2:2:2:_-:2:3:3:3:3: 3 ‘=N N N:N:_'N
xl1i2i3:i8!i_fMi1:i2!3: 8 _iMi1 i3 _fMi=f1i2i3:18!_iM x|1i2i3fa4f_fMil1i2i3:i4: - IMi1i2i3{84i_iMi=—fligizigi_iM
1
-lil 11
-1:1 11
-1:1 i1
111 1f1
-1i1 -181
1 o
-1:1 -l1:i1
101 -1:1
A1 1:1
U 111 -1i1
X -1i1 181
1 o
11 -li1
11 3 3 1: 1
1:1 3.4 -1:1
-1i1 1] 101
-1:1 3M -1i1
[1RA1)
1 Nil
-1:1 N 2 1: 1
1:1 N:3 11
-1i1 Niag -1i1
a1 1] 101
Ai1] [nem] EEE
1] 1:2:3:4:i—-iM M+ 2xM+ = (N-1)x M+ N I]1:2{3:{4:i-iM M+ 2xM+ == (N-1) M + NI,
y|1:1:1:1:-:1:2:2:2:2;-:2:3:3 3i-i3i=N NiMNi-iN y|1:1:1:1:--1:2:2:2:2:-:2:3:3:3:3:—:3:=_"N NiN:{-:N
x| 1:2:3:{4;:-iM;{1:2;3{4;:-iM;{1:2:3:4;i-iMi==i1:2:i3;i4;-M x| 1:2:3:{8f-‘Mi1i2:3!4 M:1:2:3:8:_‘Mi==1:2:3:8:_:M —
-
1 1
1 2
1 El
1 0 4
i o 1]
1 o 1]
1 1 1 1 1
1 1 -1 1 _2__
1 1 1 1 3]
v -1 1 1 1 4
1 1 1 1 |
y 1 1 1 1 M|
1 1 1 1 1
1 1 1 1 R _2__
1 1 1 1 313
1 1 1 1 ER
i i 1 ! i
1 1 1 1 3 M
L
1 1 1 H i
1 1 1 1 N:i2
1 1 1 : L]
1 1 1 1 ]
1 1 1 1 1]
1 1 -1 1 ll

Equations (4.16-17) can be expanded into:
ik,H, =U E, —ifE,
iI(OHy = IﬂEx _Usz (420)
ik,H, =U,E, —U E,

and
—ikye, B, — ke, E, =V H, —ipH,
—ikoe, ,E, —ikee, B, =ipH, -V,H, (4.21)
—ikoe, ,E, =V,H, -V . H,.

After some algebra replacing E; and H,, we obtain two eigenvalue equations with respect
to the electric field and the magnetic field, respectively. For electric fields:

-35-



Chapter 4 Finite Difference Methods in Frequency Domain

P Ex _ Pxx ny Ex _ p2 Ex
E,| |Px Py|E, =F E, [ (4.22)

where P is the global matrix, with the sub-matrices:

1 | ' 1
PXX = —FU X[g_}/yvxu y + |:k()2 I + U X(g_}x :||:gr,xx + FVyU y:|
0 r.zz r,zz 0

(4.23)
|
+U | — Me¢
X(‘gr,zz )\/Y "
1 | | 1
Pyy = _k_OZU y(?ﬂ}xvyux + I:kozl +UX(?ﬂjvy:||:gr’xx + k—OZVXUX:|
(4.24)
|
+Uy[?ﬂ)\/xghxy
I 1 1 |
ny = x[?ﬂ}vy{gr,w + k02 Vxe:|_k_§[k§| +Ux{2}vx}\/yux
(4.25)
I
+ I(Ozgr Xy +Ux[?ﬂ}/xgr,xy
| 1 1 |
Pyx =Uy(g—va|:€rxx kZVyUy:|—F|:k02| +Uy(8—}/},}\/xuy
r,zz 0 0 r,zz
(4.26)

When g,y = &y« = 0, the sub-matrices reduce to those in Zhu and Brown, 2002. Similarly,
for magnetic fields:

Hx_Qxx Qxy Hx_ sz
e alilol]

where Q is the global matrix, with the sub-matrices:

1 | ' 1
Qxx — _k_gux(?’zz}/yvxuy +|:k02| +UX(Z)VX:||:€r’XX +k—02VyU y:|

(4.28)
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1 | I 1
Qxy = —k—ozux[?ﬂ)vyvxuy +|:k02| +UX[?’ZZ}/X:||:Sr,xx +k_02VyUy:|

(4.29)
|
+U | — Me¢
>(L"C:I’,ZZ }/y "
1 | I 1
ny = —k—ozux[?ﬂ}yvxuy +|:k02| +Ux{gr’zz }/X}{gr,xx +k_02VyUy:|
(4.30)
|
+U,| — VMV, ¢
>(L"C:I’,ZZ }/y "
1 | l 1
(4.31)

I
+U,| — V,¢
yoryx
Lgr,zz

Now that we have obtained the eigenvalue problems in our vector-field FDFD, we solve
the eigen problem by using an available eigensolver and obtain the fields Ex, Ey and Hx,
Hy. The corresponding fields Hz and Ez can then be calculated with equations (4.20-21).
As previously discussed, sparse matrices are introduced to decrease the amount of
memory required. We use MATLAB as our simulation environment. MATLAB readily
includes the Arnoldi Package (ARPACK) as the function eigs. More details on the algebra in
arriving at the global equations (4.22-31) can be found in Appendix E.

4.4 Some Techniques Regarding Improvement of FDFD

To further improve the performance of FDFD, some techniques have been proposed. For
example, Yee’s staggered mesh has been already incorporated in our FDFD to reduce the
amount of grid points needed while maintaining the accuracy. If we use a normal mesh,
we only have to change the FD matrices Uy, Uy, Vi and V, in equations (4.18-19).

Index-averaging (Zhu and Brown, 2002) is another simple but useful technique, especially
when the resolution for spatial discretization is low. It is particularly important when the
computational power limits the number of grid points of the simulation. Correspondingly,
the larger the fiber geometry, the more sparse the grid points. The idea of index-averaging
is to make use of more values (i.e., grayscale over binary) near the boundaries with
changes in refractive index. It has been shown that index-averaging increases greatly the

convergence of numerical calculations. In our simulation, index-averaging is implemented
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through interpolation. As an example, on the bottom-left of Figure 4-5, the refractive
index of the point in red is given by €average = N * €4 + (1 - n) * €5, Wwhere n is the ratio of the
region with refractive index &, to the area enclosed with dashed red square. In our
simulations, this is approximated by the interpolation of sub-grid points to the Yee mesh,
the assignment of their values according to the original fiber geometry, and the
calculation of their average. The accuracy of such approximation depends on the
interpolation factor I, which is a positive even integer that specifies how many additional
sub-grid points are used. For example, when I = 10 (N), 9 (N-1) additional points are
assigned in between the original grid points, the refractive index profile of the area with
11-by-11 (2N+1)-by-(2N+1) points centered around the original grid point is averaged and
assigned to the grid point.

)
& —
€b
Hz DY; Hx: EV' Hz
(k-1,1) (k, 1)
—¢-
€a _
Dx, Hy, Ex-  |Dz, Ez- Dx, Hy, Ex- 8
_4“"1' 1) (i, 1) 1 (k, 1)
Dy, Hx, Ey-

* (micron

Figure 4-5: Schematic of staircase approximation for curved interface and index-averaging
Top: stair-case approximation of curved interface: only two levels of values are used and the
approximation depends on the resolution of grids. Bottom-left: The area enclosed by the
dashed red line is considered for index-averaging. With index-averaging, thanks to the use
of more levels of values, even with low resolution, the curved surface is well represented in

simulations, as show on the bottom-right.
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Other advanced techniques deal with the boundary conditions. Other than conventional
Dirichlet, Neumann and mixed boundary conditions, for example, the perfectly matched
layer (PML) has been proposed (Berenger, 1994) and widely used.

Without additional treatment at the boundaries, our FDFD formulation falls in the
Dirichlet boundary condition with zero-values. Additionally, by setting zero-derivatives at
the boundaries, we can use the Neumann boundary condition to reduce the calculation
window according to geometrical symmetry. This is particularly advantageous when
calculating the fundamental space-filling mode (FSM) of PC claddings.

4.5 Spurious Modes and Their Elimination

During our preliminary tests on the vector field formulation, we found that for
PBG-guiding geometries, very often spurious results ruin the whole simulations as only
limited sets of eigenvalues and eigenvectors are calculated. This is mainly due to the
various combinations of hole-guiding modes that result in various eigenvalues, and the
space close to the edges of the calculation window. In order to remove these spurious
modes, we propose the following two first techniques and also discuss other two
possibilities.

4.5.1 Post-Computation Correlation

One straightforward method in removing the spurious results is to do it manually after
obtaining the results. This can also be facilitated automatically by performing correlation
between the obtained eigenfields and the presumed modal fields. However, no matter
how this post-computation selection is performed, it requires more eigenvalues to be
calculated in order to contain desired results other than the excessive spurious results.
Moreover, it requires additional time for either computational or manual selection. We

therefore do not consider this a good solution for the problem of spurious modes.

4.5.2 Pre-Computation Edge-Cutting

As previously stated, one main type of spurious fields localizes near the boundaries. By

replacing these spaces with unity refractive index, we can remove this type of spurious
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results. The advantage of this method is that it requires only little pre-treatment in setting
up the refractive index geometry. The problem with this method is that the simulation
might not seem physical, especially when only part of the fiber geometry is included in
the simulation. The schematic for edge-cutting is shown in Figure 4-6.

y (micron)

20 -10 0 10 20
¥ (micron)

Figure 4-6: Permittivity profile of a three-ring PCF with edge-cutting
In this case, the silica outside the photonic crystal cladding is replaced by air. Since the field
of the fundamental guiding mode does not extend outside the photonic crystal cladding, the

geometry with edge-cutting can be still be regarded physical.

4.5.3 In-Computation Eigen Solver Specifications

One additional method is to specify the eigenvalues to be located during the eigen solving
process. The MATLAB sparse matrix eigen solver, eigs, seeks eigenvalues with the
largest/smallest/closest magnitudes/algebraic values/real parts/imaginary parts. For
index-guiding fiber geometries, looking for eigenvalues with the largest algebraic
values/magnitude/real parts gives good results. However, for PBG- guiding fiber
geometries, the largest eigenvalues are often those of the hole-guiding modes because of
the higher refractive index of the infiltrating material. Therefore, we have to seek
eigenvalues that are close to and smaller than the refractive index of the PCF host
material, which is silica in most cases. Unfortunately, eigs does not allow the specification

to look for only smaller values and therefore introduce spurious results with larger
eigenvalues.
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4.5.4 Divergence Maxwell Equations

By taking into account the divergence Maxwell equations, it may be possible to avoid
some spurious results, as more physical constraints are imposed. From this point of view,
the vector-field FDFD scheme proposed by Fallahkhair et al., 2008 may be a better choice.

However, careful studies and comparisons shall be made to come to a solid conclusion.

4.6 Implementation of the Scalar-Field FDFD and the Vector-Field FDFD

Both the scalar-field FDFD and the vector-field FDFD are integrated into a single code

library written in MATLAB and can be found in Appendix A. A simulation console m-file is

written to incorporate the various function m-files to perform the simulations. A general
computational flow is as follows:

1) Input parameters for the fiber and the simulation are assigned in the console m-file.

2) The geometry_ m-files generate the fiber geometry according to specification and the
factor of index-averaging.

3) If index-averaging is desired, the index_avg m-file processes the geometry according
to mesh configuration.

4) The next step is to formulate the eigenvalue problem. The sFDFD m-file is for
scalar-field FDFD, the vFDFDd m-files are for vector-field FDFD with diagonal
anisotropies, and the vFDFDt m-files are for vector-field FDFD with transverse
anisotropies.

5) The computation proceeds to the eigen solving process. The eigensolve m-file uses the
eigs function in MATLAB, which seeks a defined number of eigenvalues and
eigenvectors of a specific matrix using ARPACK (Arnoldi Package), and recasts the
eigenvectors into eigenfields according to the dimension of the eigenvalue problem.

6) With some additional m-files, the results are arranged, displayed, and saved at the

end of the console m-file.

4.7 \Verification and Benchmarking of Proposed Schemes

4.7.1 Methods for Verification

“Are the results correct, or at least relevant?” After the implementation of the numerical
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schemes, the next problem comes into mind is whether they give good results. We use
the following three methods to verify our FDFD schemes:

1) Theoretical verification,

2) Numerical verification, and

3) Experimental verification.

1) Theoretical Verification

The first method is to compare the numerical results with good references, which are
often analytic results. The idea is to use simple fiber geometries with known analytic
results to verify the numerical schemes, and then extend the use of the validated
numerical schemes to more complicated structures where analytic analysis becomes
extremely difficult -- if not impossible -- because of the problem complexity.

Modal analysis of step-index fiber geometries, particularly those with small index-contrast,
can be performed analytically. For more complicated photonic crystal fibers, although the
analytic expressions are unsolvable, through basis-function expansion approach, one can
obtain accurate results provided that the photonic crystal structure is not too complicated.
Sometimes the basis-function expansion approach is regarded semi-analytic and it is
useful for fiber geometries with periodic structures. Nevertheless, when there exist
non-circular air holes, for example, the basis-function expansion approach is not
applicable. Accordingly, it cannot accurately characterize real fiber geometries that are
manufactured with defects.

2) Numerical Verification

The next method is numerical verification. As the name suggests, this method lies entirely
in the simulations themselves. The idea is to perform auto-verification of the numerical
methods themselves. With this method, not only the numerical schemes (theory,
formulation) themselves are accounted, but also the simulation conditions. The most
important results of this verification method are the convergence curves. They may be as
functions of either the step size or the size of the calculation window. Fast and steady
convergence is expected for a good simulation scheme, as it represents smaller
uncertainty of the simulation. On the other hand, although the uncertainty may be
minimized, we still have no information regarding the error. Similarly, good convergence
against the size of the calculation window may suggest that our simulation results are

intrinsic, but does not give any information on whether the intrinsic results are correct.

3) Experimental Verification
The third method is experimental verification. Intuitively, it appears to be the most

convincing verification method as the ultimate goal of simulations is to predict what is
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going to happen in experiments. Therefore, it is worthwhile to take into account the
experimental verification. However, since the field of PLCFs is still new and awaits further
studies, it is not easy to control the experimental conditions accurately. This has lots to do
with the not-so-organized nature of LCs; they are not perfectly crystalline. The molecular
arrangement of LC inside the host PCF greatly affects the characteristics of the PLCF, but
with our current experimental means, it is not possible to observe the real configuration
of LC inside the fiber. As the first approximation, a quasi-planar configuration is often
assumed for nematic liquid crystals in a PCF without any pre-treatment. This will be
further discussed in Section 5.3. Consequently, we may use experimental results for
qualitative verification rather than strict quantitative comparison.

In order to raise the confidence level of our simulations, we test our FDFD schemes with
various fiber geometries according to the first two verification methods described above.
A brief introduction on the test fiber geometries is as follows, and will be discussed in
details respectively in the following sections.

We test the performances of our numerical tools with the following geometries:

1) Single-Mode Fiber (SMF)
We first consider a standard single-mode telecommunication fiber (SMF). The diameter
of a SMF is smaller, and its minimum radius of curvature in structure larger, than a
typical PCF. As a result, the simulation condition is expected to be less stringent. The
long wavelength also reduces computational effort. Furthermore, as discussed in
Chapter 3, when the index-contrast is low, the LP approximation gives good results and
therefore can be used for comparison.

2) Multi-Mode Fiber (MMF)
In a multi-mode fiber, the field patterns of higher-order modes have more rapid
changes (higher spatial frequency) and are therefore fast-varying with respect to the
dimension of the fiber structure. The higher-order modes also have larger spatial extent
and therefore require larger calculation windows. The MMF is expected to pose more
stringent conditions on the simulations, and is useful in examining the performance of
the FDFD schemes.

3) Step-Index Fiber With High Index-Contrast (HC-SIF)
When the index-contrast is high, the scalar approximation is no longer valid. With an
HC-SIF, we show the discrepancy between the scalar field and the vector field
formulations. This fiber geometry, along with the next one, which is the holey fiber, are
discussed in Zhu and Brown, 2002. Since our vector-field FDFD is based on their work,
by replicating the results, we can also know whether we are on the right track with the

numerical schemes.
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4) Photonic Crystal Fiber (Holey Fiber, HoF)
Last, a photonic crystal fiber is considered. The HoF has the same type of geometry as
the host PCF of our PLCF of interest.

4.7.2 Single-Mode Fiber (SMF)

Some excerpt from the specification of Corning© SMF-28™ telecommunication fiber
(Appendix B) is shown in Table 4-5.

Table 4-5: Excerpted parameters of Corning© SMF-28™ Optical Fiber

Core Diameter 8.2um
Refractive Index Difference 0.36 %

By defining the refractive index difference as

Neore — Neladdi
An = —2redadding . 10004 (4.32)

ncladding

and assuming the cladding to be made of fused silica, with refractive index specified by

the common Sellmeier equation (Appendix C)

af_kgf_kaf

n®=1+
2-c, B-c, »-c,

(4.33)

where the Sellmeier coefficients are shown in Table 4-6, we arrive at the SMF for
benchmarking (Table 4-7).

Table 4-6: Sellmeier coefficients for fused silica

B, B, B,
6.96166300E-1 4.07942600E-1 8.97479400E-1
Ci (um?) C; (um?) Cs (um’)
4.67914826E-3 1.35120631E-2 9.79340025E+1
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Table 4-7: The SMF for benchmarking

Wavelength 1.55pum

Core Diameter 8.2um
Core Refractive Index 1.449504
Cladding Refractive Index 1.444304
An 0.360035%
Normalized Frequency, V 2.038674

We first analyze the SMF analytically with the LP approximation. The solutions of

equations (3.32-33) are obtained by solving the dispersion relation

quﬂ—(u) =+4v Klﬂ(v) '
J(u) K, (v)

where u, v are the transverse propagation constants within the core (a) and the cladding

(4.34)

(k), respectively, multiplied by the radius of the core (p), i.e.,
u=a-p, V=K-p, (4.35)

where
2 2,2 2 2 2 2,2
a = kO Neore _ﬂm ) K = IBm - kO r]cladding' (436)

J and K are Bessel’s functions of the first and the second kinds, respectively. Furthermore,

u and v are related by the normalized frequency, V, as in equation (3.48):
u2 +V2 :VZ, (437)
By introducing the b, the normalized propagation constant, to replace u and v,

ﬂz_kzncza in \Y ?
== | 0<b<l (4.38)

0" ‘core 0 ' ‘cladding \

the dispersion relation is recast as

b= ioplu(VV1-b) | FKu.Vib) o
J,(VV1-b) K, (v+/b)

(4.39)

With sufficiently small step-size, we can obtain the values of b at which the dispersion
relation (4.39) is satisfied, and that in turn gives us the effective refractive index (neg) of

the mode concerned. The dispersion curves with I =0 and I = 1 are shown in Figure 4-7.
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Figure 4-7: Dispersion relation curves of the SMF for/=0and /=1

We can see that when I = 0 there is one solution for D =0, but when /=1 (or/>1), D is
always greater than zero. This corresponds to single-mode operation of the optical fiber.
The corresponding mode is LPg;, with nes = 1.446535. This value is calculated with 1E-8
step size in b and will be taken as the reference for our numerical simulations. We note

that Marcuse’s approximation formula (4.40) also gives a similar value, 1.446532.

O.996) (4.40)

b(V)~|1.1428-——
V) ( v

We do not discuss the valid digits in Marcuse’s approximation, but rather assume that the

fourth digit is accountable.

Table 4-8: Common FDFD simulation parameters for the SMF

Calculation Window
. . 32um
(Convergence against Step Size)
Step Size
) ) ] 0.05um
(Convergence against Window Size)
Index-Averaging Factor (If Applied) 10
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The results of our FDFD simulations on the SMF are shown in Figure 4-8, Figure 4-9 &
Figure 4-10, and the common parameters of the simulations are given in Table 4-8. We
perform convergence analysis with respect to the size of the calculation window and the
grid step size.

1.446536
1.446535
1.446534
1.446533

1.446532

-#-Without Index-Averaging
1.446531

1.446530 Index-Averaging Factor: 10
1.446529
1.446528

1.446527

Effective Refractive Index of LPO1

1.446526
1.446525

1.446524
24 26 28 30 32 34 36 38 40 42 44 46 48

Size of Calculation Window (pm)

Figure 4-8: Convergence curves of the SMF with respect to the size of calculation window

calculated with scalar-field FDFD

Figure 4-8 shows that the convergence reaches 1E-6 (0.7ppm) with calculation window
larger than 32um. We take this value to perform the convergence analysis with respect to
the size of steps, without index-averaging (Figure 4-9) and with index-averaging (Figure
4-10), for both scalar-field and vector-field FDFDs.

With index-averaging, the convergence reaches the order of 1E-6 (Figure 4-10) with
number of grids more than 250, while the value without index-averaging is almost 2E-5
(Figure 4-9). The index-averaging technique improves largely the convergence, especially
when the resolution is low. At 250 grids, the resolution is 0.128um, roughly 1/12 the
wavelength (A=1.55um). This criterion, together with the 1E-6 (3.5ppm) convergence, will
later be considered in our simulations. It should be noted that in most cases, owing to
limited computational power, such criterions are not quite accessible.

By comparing the results with the anlytic value (LPO1, n.s = 1.446535), we obtain the
errors of our simulations, which is 1E-6 (0.7ppm) for the scalar-field FDFD (1.446534), and
5E-6 (3.5ppm) for the vector-field FDFD (1.446530). In brief, for the SMF, the analytical

and numerical values match well to the fifth digit after the decimal point, which
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corresponds to relative error smaller than 7ppm.

1.446555

1.446550

1.446545

1.446540 / \ Scalar-Field FDFD

1.446535 | 5 A h\,.!\ A. AAA AN s D
1Y "U’V Yind ~ v s

1.446530 x

Vector-Field FDFD

1.446525
IYU
1.446520

Effective Refractive Index of LPO1

1.446515 +
1.446510
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Number of Grids
——sFDFD, without index-averaging ——sFDFD, index-averaging factor: 10
——VFDFD, without index-averaging, E-formulation ——vFDFD, without index-averaging, H-formulation
—=yFDFD, index-averaging factor: 10, E-formulation ——vFDFD, index-averaging factor: 10, H-formulation

Figure 4-9: Convergence curves of the SMF with respect to the number of grids

We note that in our simulations the E-formulation and the H-formulation do not make a
difference. In Figure 4-10 the two curves almost overlap with each other. Figure 4-11
shows the first sixteen eigenfields in our scalar-field simulation, and Figure 4-12 shows the

two sets of fields of the fundamental modes in our vector-field simulation.
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Figure 4-10:
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Figure 4-11: Eigenfields (eigenvectors in matrix formulation) of the SMF with the largest 16

eigenvalues calculated with scalar-field FDFD

We see that only one physical mode exists, which corresponds to the single-mode operation

of the fiber. The spurious eigenfields possess mirror symmetry with respect to y=x. This is

due to the discretization of the grids: each axis is discretized from -N/2 to N/2-1 with unity

step size, where N is the number of grids.
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Figure 4-12: Fundamental eigenfields of the SMF calculated with vector-field FDFD

With vector-field FDFD, it is possible to obtain information regarding all six fields in two sets.

4.7.3 Multi-Mode Fiber (MMF)

Unlike the small core size of a telecommunication SMF, a typical commercial MMF has
core size around 50 to 62.5um and is thus larger in size than a SMF for numerical
simulations. Excessive modes also make them impractical for comparison between
analytical and numerical analyses. Consequently, a MMF with a smaller V-parameter is
preferred for numerical tests and benchmarking. By increasing four times the core
diameter of the SMF described in the previous section, we obtain the MMF for
benchmarking with V =8.15 (Table 4-9).

Table 4-9: The MMF for benchmarking

Wavelength 1.55um

Core Diameter 32.8um
Core Refractive Index 1.449504
Cladding Refractive Index 1.444304
An 0.360035%
Normalized Frequency, V 8.154694
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Similar to the benchmarking with the SMF, we first perform LP analysis of the MMF

considered. The results are given in Figure 4-13 and Table 4-10.
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Figure 4-13: Dispersion relation curves of the MMF from /=0to /=6

Table 4-10: n. of LP,,, modes of the MMF
m
| 1 2 3
0 1.449147 1.447645 1.445121
1 1.448600 1.446538 -
2 1.447888 1.445312 -
3 1.447022 - -
4 1.446016 - -
5 1.444883 - -
6 - - -
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Table 4-11: Scalar-field FDFD simulation parameters for the MMF

Calculation Window
: . 50pm
(Convergence against Step Size)
Step Size
. ) . 0.1um
(Convergence against Window Size)
Index-Averaging Factor (If Applied) 10

Next, we also use the scalar-field FDFD to study the convergence with respect to the
calculation window. The result is shown Figure 4-14. As expected, for higher order modes,
larger calculation windows are required because the extents of the fields are wider. More
detailed convergence curves for the first five modes are shown in Figure 4-15. We take a
moderate calculation window size of 50um for the convergence analysis with respect to
the step size. In fact, other than the quantitative convergence curves, we can also
estimate whether the results are intrinsic by observing the orientation of the / > 0 modes.
If the modal patterns rotate randomly in simulations, then we can say that the results are
not affected by the rectangular calculation window. Otherwise the orientation always
matches the symmetry condition of the simulation, which depends on the calculation

window and the discretization scheme.
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Figure 4-14: Convergence curves of the MMF with respect to the size of calculation window

calculated with scalar-field FDFD
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Figure 4-16 & Figure 4-17 show the normalized convergence curves of the scalar-field
FDFD, without and with index-averaging, respectively. Contrary to expected, the
calculations for MMF converge faster than for SMF and reach <lppm with a lower
resolution at 200 grids for lower order modes (Figure 4-17). This infers than the
requirements on simulations not only depend on the wavelength and the complexity of
modal fields, but also the radius of curvature upon interfaces. We also note that the
effectiveness of index-averaging is once again verified. In the following simulations, we

will take index-averaging as a standard process.
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Figure 4-15: More detailed convergence curves with respect to the size of calculation window
for the first five modes of the MMF calculated with scalar-field FDFD

-53-



Chapter 4 Finite Difference Methods in Frequency Domain

1E-5
9E-6 ——LPO1  ----- LP11 --=--LP21 ——LP02 ——LP31
-
----- LP12 ——LP4l -----LP22 —=—LPO3 -----LP51
E]
s
()]
(%]
c
()]
[T}
S
(0]
E 4
S §
Q
©
(7]
N
©
£
S
2 OE+0
+ N b, . N P
Wy N D NS N A KT Y S 7 Y27\ Nt g S NN g
1E-6 YRV AL WA\ RN W‘W'* /‘\/“\
- = H T H " B R ~ t” < W g < - SN AV ‘4’ ~
oo \ / ; ] .
2E-6 1oy N (AL 7N N\ Ares A EAEN P
d LN v v
-3E-6 .\& < i 4 ¥
-4E-6 !
1
-5E-6

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Number of Grids

Figure 4-16: Convergence curves of the MMF calculated with scalar-field FDFD and without

index-averaging
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We used the same calculation window size (50um) for the vector-field simulations but
found that some modes swap their orders and therefore made the results difficult to
arrange. Consequently we increase the size of the calculation window to 100um. Figure
4-18 shows the corresponding convergence curves of the vector-field simulations. By
comparing the results to the analytic values, we obtain the errors. The results are
arranged in Table 4-12 (scalar-field FDFD) and Table 4-13 (vector-field FDFD).
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LP12 LP41 LP22 LPO3 LP51
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Figure 4-18: Convergence curves of the MMF calculated with vector-field FDFD and

index-averaging factor 10

Table 4-12: Scalar-field FDFD results on n.; and errors of the LP,,, modes of the MMF

m
| 1 2 3
0 1.449147 (Oppm) 1.447645 (Oppm) | 1.445109 (-8ppm)
1 1.448600 (Oppm) 1.446537 (-1ppm) -
2 1.447888 (Oppm) 1.445309 (-2ppm) -
3 1.447022 (Oppm) - -
4 1.446015 (-1ppm) - -
5 1.444880 (-2ppm) ] _
6 - - -
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For lower order modes, the simulation errors are in general of the order of few ppm.
Other than n.g and the number of modes that can be calculatedly analytically, through
theory we also know that for LP,, modes with I = 0, there exist two degeneracies
(polarization) while for I > 0, there are four degeneracies (polarization and geometry)
(Figure 4-19).

Table 4-13: Vector-field FDFD results on n.s and errors of the LP,,, modes of the MMF

m
| 1 2 3
0 1.449146 (-1ppm) 1.447644 (-1ppm) | 1.445120 (-1ppm)
1 1.448600 (Oppm) 1.446537 (-1ppm) -
2 1.447887 (-1ppm) 1.445311 (-1ppm) -
3 1.447021 (-1ppm) - -
4 1.446015 (-1ppm) - -
5 1.444881 (-1ppm) ] ]
6 - - -

LPo, LP,,
”E Y JO{ ‘L (, Jl ul cosgﬁl Jl{nq Cosp R
'y
r )
H_ 11. Jo[ ,_] JI ”R sing y J1{HI; sin ¢ ¥

Figure 4-19: Degeneracy of some LP;,, modes in a MMF

Such degeneracy is observed in our simulations. With the scalar-field FDFD, because the
polarization of fields is dropped, the degeneracy decreases by a factor of two (Figure
4-20). With the vector-field FDFD, the results match the theoretical degeneracy (Figure

4-21). Three two-fold degenerate modes and seven four-fold degenerate modes are
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observed, which corresponds to results shown in Figure 4-13 and Table 4-10.
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Figure 4-20: Eigenfields with the largest 20 eigenvalues of the MMF calculated with
scalar-field FDFD
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Figure 4-21: Eigenfields (Ex) with the largest 48 eigenvalues of the MMF calculated with
vector-field FDFD
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4.7.4 High Index-Contrast Step-Index Fiber (HC-SIF)

We next consider a step-index fiber (SIF) with high index-contrast. We use the same
geometry as introduced in Zhu and Brown, 2002. Since we follow a similar formulation in
our vector-field FDFD scheme, the results obtained verify whether our numerical
implementation is valid. The fiber geometry is given in Table 4-14. The analytical value of
the effective refractive index of the fundamental mode is 1.438604 (Zhu and Brown,
2002).

Table 4-14: The HC-SIF for benchmarking

Wavelength 1.5um
Core Diameter 6um
Core Refractive Index 1.45
Cladding Refractive Index 1.0
An 45%
Normalized Frequency, V 8.796459

Although as previously discussed, the scalar-field formulation with LP approximation is no
longer valid when the index-contrast is high, we still like to show the results as a
comparison. Similar to the previous two sections, we perform LP analysis on the HC-SIF
and obtained the fundamental neg 1.439051. The error is -0.000453 (>300ppm) when
compared with the analytical value (1.438604). This shows quantitatively the limit of the
scalar-field LP approximation.

Figure 4-22 gives the dispersion curves for I = 0 to / = 10, and Table 4-15 gives n.g of the
modes under the scalar-field LP approximation. We next perform simulations with both
scalar-field and vector-field FDFDs. The common simulation parameters are shown in
Table 4-16.

The resultant fundamental nes is 1.439054 for scalar-field FDFD and 1.438608 for
vector-field FDFD, each of them more or less corresponds to its analytic counterpart
(1.439051 and 1.438604, as derived earlier in this section). Calculation window of 12um,

as in Zhu and Brown, 2002, is used to ensure that the results are comparable.
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Figure 4-22: Dispersion relation curves of the HC-SIF from /

Table 4-15: n. of the LP,,, modes of the HC-SIF
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Table 4-16 Common FDFD simulation parameters for the HC-SIF

Calculation Window
: . 12pm
(Convergence against Step Size)
Step Size
) ) ) 0.05um
(Convergence against Window Size)
Index-Averaging Factor (If Applied) 10

1.439054
1.439052
1.439050
1.439048
1.439046
1.439044
1.439042
1.439040

sFDFD, index-averaging factor: 10

neff

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
1.438614

] VFDFD, index-averaging factor: 10, E-formulation

1.438612 ¥R ) . .
WM —+—vFDFD, index-averaging factor: 10, H-formulation

1.438610 >e
{J M WM Ao

1.438608 ¢
i
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Figure 4-23: Convergence curves of the fundamental n.; of the HC-SIF with scalar-field FDFD
(top) and vector-field FDFD (bottom)

4.7.5 Holey Fiber (HoF)

The next fiber geometry, a holey PCF, is also after Zhu and Brown, 2002. The geometry is
as shown in Figure 3-1, with parameters specified in Table 4-17. The results are shown
and compared with reference values in Figure 4-24 and Table 4-18.

One concern of the triangular-lattice PCFs is the degeneracy of the fundamental modes. It
has been shown both theoretically (Steel et al., 2001) and numerically (Koshiba and Saitoh,
2001) that, although there exists structural difference along the x- and the y- directions,
the fundamental modes in two orthogonal polarization states are degenerate. Our
simulation also confirms such degeneracy; the fundamental modes shown in Figure 4-25
and Figure 4-26 all have n ;= 1.42864 when calculated with 800 grids.

-60 -



Chapter 4 Finite Difference Methods in Frequency Domain

Table 4-17: The HoF for benchmarking and the FDFD simulation parameters

Wavelength 1.5um
Pitch, A 2.3um
Diameter, d 0.5um
Nsilica 1.45
Calculation Window 6A = 13.8um
1.43027
1.43025
1.43023
1.43021
% sFDFD, index-averaging factor: 10
2 143019
1.43017
1.43015
1.43013
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
1.42872 T :
1.42871 4 AV, A\ vFDFD, index-averaging factor: 10, E-formulation
1.42870 VA\ ——vFDFD, index-averaging factor: 10, H-formulation
1.42869
% 1.42868 L 4 A 4 o
< 1.42867 Y‘W
1.42866 v P N
1.42865 I Moy A n Ry o ———
1.42864 :

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Number of Grids

Figure 4-24: Convergence curves of the fundamental n.4 of the HoF with scalar-field FDFD
(top) and vector-field FDFD (bottom)
It should be noted that for the vector-field simulations, the results from E-formulation and

H-formulation overlap each other.

Table 4-18: Reference values on fundamental n.4 of the HoF and our simulation results

Reference Approach Result
Mogilevtsev et al., 1999 LFM 1.42805
Huang and Xu, 1993 FD-BPM 1.42868
Lisse et al., 1994 FDFD 1.42858
Zhu and Brown, 2002 FDFD 1.42868
Current Work, Scalar-Field FDFD FDFD 1.43026
Current Work, Vector-Field FDFD FDFD 1.42864
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Figure 4-25: The 1* and 2™ sets of eigenfields in E-formulation (Ex-Ey-Hz) of the HoF
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Figure 4-26: The 1* and 2" sets of eigenfields in H-formulation (Hx-Hy-Ez) of the HoF
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4.7.6 Summary on Benchmarking of FDFD

The performance with 800 grid points and index-averaging of the FDFDs implemented is
summarized in Table 4-19.

Table 4-19: Benchmarking results of the scalar-field FDFD and the vector-field FDFD

Mode Reference Scalar-Field | Relative | Vector-Field | Relative
FDFD Error FDFD Error
Single-Mode
Fiber LPo; 1.446535 1.446534 lppm 1.446530 4ppm
LPos 1.449147 1.449147 Oppm 1.449146 -lppm
LPyq 1.448600 1.448600 Oppm 1.448600 Oppm
LP,; 1.447888 1.447888 Oppm 1.447887 -lppm
LPo, 1.447645 1.447645 Oppm 1.447644 -lppm
Multi-Mode LP3; 1.447022 1.447022 Oppm 1.447021 -lppm
Fiber LP1, 1.446538 1.446537 -1ppm 1.446537 -lppm
LP4; 1.446016 1.446015 -lppm 1.446015 -lppm
LP,, 1.445312 1.445309 -2ppm 1.445311 -lppm
LPo3 1.445121 1.445109 -8ppm 1.445120 -lppm
LPs; 1.444883 1.444880 -2ppm 1.444881 -lppm
High
Index-Contrast | Fund. | 1.438604 1.439054 313ppm 1.438608 3ppm
Step-Index Fiber
Holey Fiber Fund. 1.42805 1.43026 0.2% 1.42864 413ppm

4.8 Summary on Implemented FDFDs

So far we have compared our simulation results with well-known fiber geometries, and

our FDFD schemes are qualified to give good and consistent results. However, in this

thesis we emphasize on numerical schemes available for PLCFs, so it is essential to test

our FDFD schemes with related fiber geometries. Mostly likely due to the newly

developed concepts of PLCFs, there has not been much work in literature that gives good

reference values. As a result, we will proceed directly to the PLCF of interest and discuss

the results in Chapter 5. On the other hand, as proposed in Section 4.7.1, we can still

perform analysis on convergence curves against the sizes of the grid and the computation
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window to auto-verify the numerical schemes themselves. Furthermore, thanks to the
six-fold symmetry of the PCF considered, it may also be interesting to compare the results
obtained under different numerical configurations for an identical physical structure.

To sum up, in this chapter we discussed the scalar-field FDFD and the vector-field FDFD
implemented in this thesis and tested them with some exemplary fiber geometries with
three verification concepts. We show quantitatively the limitation of the scalar-field
calculation, its difference to the vector-field calculation, and the errors of the FDFDs
compared with analytical values. The proposed vector-field FDFD, based on Zhu and
Brown, 2002, gives good results for the single-mode, multi-mode, and high-contrast
step-index fiber geometries. When vector-field FDFD is applied, relative error of 3ppm is
observed for neg of the fundamental mode in HC-SIF. For the holey fiber geometry, the
result of the vector-field FDFD differs by 6E-4 (413ppm) from that of the localized function
method. On the other hand, it should be noted the results obtained with scalar-field FDFD
have larger errors, with 313ppm for HC-SIF and 0.2% for HoF, which are approximately
100 times and 5 times larger than with vector-field FDFD, respectively.

Computational power (memory requirement, in particular) appears to be a concern
regarding the convergence of the simulations. The specification of the computer used for
the simulations in this chapter can be found in Appendix D. One can always perform the
benchmarking with more powerful computers, however, from the results in this chapter
we have gained confidence of the FDFD schemes despite computational limitations. Since
in this thesis we set an emphasis on PLCFs, it is therefore better to apply our tools to the
real battlefield. In the next chapter we will discuss the PCF 070124 and the PLCF sample,
which is PCF 070124 infiltrated with a LC commonly known as 6CHBT.
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5 Photonic Liquid Crystal Fiber of Interest

5.1 Photonic Liquid Crystal Fiber Geometry

The PCF chosen for our studies is PCF 070124, with three rings of air holes, manufactured
by Maria Curie-Sktodowska University (Uniwersytet Marii Curie-Sktodowskiej, UMCS) in
Lublin, Poland. The geometry and the optical microscope image of the PLCF are shown in
Figure 5-1, together with the liquid crystal chosen for infiltration. We choose a 3-ring PCF
for its smaller transverse extent and thus the possibility to include the entire periodic
structure in the numerical simulations.

3-Ring PCF

d=3.9um
A=6.5pum
d/A=0.6
| AN
o
©SciDex 1.2 6CHBT Nematic LC

1-(4-hexyl-cyclohexyl)-4-isothiocyanato-benzene (C;qH,;NS)

Figure 5-1: PLCF of interest, showing the three-ring host PCF 070124, the nematic LC, 6CHBT,

and the optical microscope image

5.2 Liquid Crystal for Infiltration
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6CHBT (also commonly known as 6CPS) is chosen to be the LC for infiltration. The optical
properties regarding 6CHBT can be found in Schirmer et al., 1997. The chemical structure
of 6CHBT is shown in Figure 5-1 and the corresponding uniaxial nematic liquid crystal
(N-LC) model in Figure 5-2.

Exx/E0 =12 + (1% — n?) sin® 6, cos? .

c Exy/E0 = Epx = (ng — nf,) sin” 6, sing, coso,
o Ey- /80 =€ = (nf? - ng) sinB, cosO, coso,
£, /€0 =12 2 _ 2 6in6. cos2
y &y /& =n,+ (n, —n,)sin” 6. cos~ ¢,
X & /€0 =n> + (n* —n?) cos?6,

Figure 5-2: Uniaxial nematic liquid crystal (N-LC) model

5.3 Molecular Arrangements of Liquid Crystals

After infiltrating the liquid crystal molecules into the holes of the host PCF, several possible
molecular arrangements can be obtained. Figure 5-3 shows some steady-state molecular
arrangements, after Wolinski et al., 2006, and Figure 5-4 shows variants of molecular
arrangements which can be obtained under external fields, after Ertman et al., 2009.

Planar Radial Axial

Figure 5-3: Molecular arrangements of LC inside the holes of PCF
(a) Planar, (b) Radial and (c) Axial
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a) planar orientation b) transverse orientation ¢) angular orientation

(¢ =0°) (¢ =90°) ()

S S S S S S S S S S S S S,
W 777,
||| S/ S S S S S S
LSS S S S S S S S

& XX = 80
By =8l Eyw ™ E¢ Eyy = sin*(9) &, + cos*(9) &,
8ZZ

€, €7~ COSZ(d)) €e + Sm2(¢) €

XX~ <o g

Figure 5-4: Variants of molecular arrangements of LC inside the holes of PCF

5.4 PLCF Sample Preparation

The sample PLCF consists of two parts: the empty PCF and the LC-infiltrated PLCF, all together

in the form of a single fiber. The PLCF samples are prepared with respect to the following
procedures:

1) An empty PCF with certain length is prepared.

2) The protective layers on both ends is striped and the end-facets are cleaved.

3) Light from a laser diode is focused by an objective onto one end-facet of the empty
PCF.

4) The other end of the PCF is immersed into LC.

5) LC molecules infiltrate into the holes by capillary force (Figure 5-5).

6) The part of the PCF that is infiltrated by LC molecules becomes lossy and therefore the
infiltration process can be monitored via observation of fiber losses (Figure 5-5).

7) After infiltration, the PLCF end-facet is cleaved again, and the residual LC molecules on
the end-facet is removed with proper cleaning.
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Figure 5-5: PCF immersed in LC

The liquid crystal molecules infiltrate into the PCF with capillary force. The infiltration can be
monitored as the PCF gets lossy after infiltration. The index-guiding PCF is transformed into

a PBG-guiding PLCF after infiltration and becomes selective on wavelength.

A video clip of the infiltration process can be found in the attached CD of the thesis, under
the name “LC_Infiltration.mp4”. Figure 5-6 shows some selected frames of the video clip
tagged with time. Note that the time 00’00 indicates the start of the video, not the
infiltration process. The LC molecules raise much faster in the beginning, then slow down

gradually, and finally reach a limit.
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Figure 5-6: Selected frames from the LC infiltration video clip

5.5 Experimental Setup

The experimental setup for measuring the transmission spectra of PLCFs is shown in
Figure 5-7. A white light source (Ocean Optics Halogen Calibration Light Source
HL-2000-CAL and HL-2000-CAL-ISP) is focused onto the empty PCF end facet by an
objective. A probing single-mode fiber (SMF), is then attached in proximity to the PLCF
end facet and connected to the spectrometer. The signal is analyzed by a fiber optics
spectrometer (Ocean Optics HR4000) with spectral resolution of around 0.25nm. A Peltier
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module is used to heat up or cool down the PLCF sample. A Testo 735 precise
thermometer with 0.05°C resolution and 0.1°C accuracy is used to monitor temperature

changes.
PCF~35cm  PLCF ~5cm | SMF
Halogen Lamp Spectrometer
[ Thermometer ]
Light Source Spectrometer
Ocean Optics HL-2000-CAL Ocean Optics HR4000
Halogen Calibration Light Source High-Resolution Fiber Optic Spectrometers

Resolution ~0.25nm

Thermometer
Testo 735 precise thermometer
System accuracy 0.05 °C
Resolution 0.001°C

Figure 5-7: Experimental setup

5.6 Numerical Setup

5.6.1 Refractive Index of Silica

The refractive index of silica is well described by the common Sellmeier equation (4.33)

with coefficients shown in Table 4-6. However, since we are interested in the behaviors

with respect to temperature change, we adopt the temperature-dependent two-term
Sellmeier dispersion relation,

n?=A+ ZBAZ + EMZ .

A-C A -E

with coefficients from Medhat et al., 2002. One term is due to electric resonance

(5.1)

absorption and the other term is due to the lattice/ionic resonance absorption, where n is
the refractive index, A is the wavelength in um. A, B, C, D and E are material-dependent
Sellmeier coefficients. The coefficients are given in Table 5-1, and the corresponding
dispersion curves of silica are shown in Figure 5-8 and Figure 5-9. The common dispersion
curve for fused silica is drawn in dashed line, tagged ‘Fused Silica’.
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Table 5-1: Temperature-dependent Sellmeier coefficients for silica

Temperature A B C (um?) D
20°C 1.311382 0.794229 0.010951 0.999525
25°C 1.309557 0.796189 0.010936 0.986365
29°C 1.308097 0.797703 0.010924 0.975837
34°C 1.306272 0.799595 0.010909 0.962676
40°C 1.304082 0.801867 0.010891 0.946884

*F = 100 um®. (Medhat et al., 2002)
1.472
1.47 N .
Lo 1466 o O SO OO SO S
s :
‘S ———Fused Silica
&= 1,46 - —20°C .
25°C
1.458F
29°C
1.456 —34°C ‘ =
—40°C ‘ ! 7
1.454 I i i I i
400 450 500 550 600 650 700
Wavelength (nm)

Figure 5-8: Temperature dependent dispersion curves of silica
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~ :
—34°C . 5
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Figure 5-9: Temperature dependent dispersion curves of silica (zoom in)

The refractive index of silica (ngic,) rises with temperature.
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5.6.2 Refractive Index of 6CHBT

The refractive index of liquid crystal is generally described by the Cauchy equation:
B C
Moo = Aot —5 T (5.2)
However, Schirmer et al., 1997 has measured the refractive index of a mixture of nCHBT
(nCPS, Figure 5-10), and fitted the experimental data using single band model:

/12/120

ne,o E:l'—I—Ge,o lz _ﬂz ' (53)

and gave the coefficients as shown in Figure 5-11.

COMPOSITION N m W% Tw/°C
4 3023 400
R,,—O—@—Ncs 6 33.34
8 36.43
nCPS

Figure 5-10: The mixture of nCHBT (nCPS)

Alkyl chains with n carbon atoms (C,H,,.1) are named R, with n given in the third column.

LC T/C° n,(589nm) Ay/nm Go/1073nm™% o/107°
nCPS 20 1.5215 1258 1.147 0.99
30 1.5227 126.8 1.099 .12

LC T/C® n,(589nm) A,/nm G/10"3mm~* /1073
nCPS 20 1.6792 156.7 2.569 0.90
30 1.6631 154.6 2.584 0.88

Figure 5-11: Coefficients for nCHBT (nCPS) mixture with single band model
After Schirmer et al., 1997.

We use the single band model and the corresponding coefficients in our simulations. The
refractive indices at temperatures between 20°C and 30°C are obtained through

interpolation. As an example, the ordinary and extraordinary dispersion curves at T=28°C
are plotted in Figure 5-12.
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Figure 5-12: Ordinary and extraordinary dispersion curves of 6CHBT at T=28°C
The ordinary (n,) and extraordinary (n.) refractive indices of 6CHBT are larger than that of
fused silica (ngyi.o~1.46) over the spectral range of concern. This infers whenever there exist a

guiding mode in the silica core, it is formed by the PBG-guiding mechanism.

5.6.3 Numerical Auto-Verification and Comparison with Experimental Results

Following the idea of numerical verification in Section 4.7.1, we perform auto-verification
of the numerical scheme with the PLCF of interest and its host PCF structure in the
following sections. Both scalar-field and vector-field FDFD are considered. The averaged
refractive index of liquid crystal:
2 1
Mag =3 Mo +3Me (5.4)

is used in the scalar-field FDFD. For comparison, we also perform simulations on such
‘isotropic’ PLCF with the vector-field FDFD.

As there is no good analytical reference for simulations on PLCFs, we also try to compare
the numerical results with experimental results in additional to the numerical
auto-verification. We recall that in Section 4.7.1 it is mentioned that owing to the limit of
experimental means, direct qualitative comparison is not quite accessible. Instead, we

compare the results qualitatively. What come to our mind that can be easily compared

-73 -



Chapter 5 Photonic Liquid Crystal Fiber of Interest

are:
1) Field intensity distribution, and
2) Transmission spectrum
In the next two sections, we will discuss about some characteristics of the empty host PCF
and the PLCF sample with these bases.

5.7 Experimental and Numerical Results for the Host PCF

5.7.1 Field Intensity Distribution

In FDFD simulations, the first-hand results obtained are the effective refractive index (n.g)
and the modal field distribution, which correspond to the eigenvalue and the eigenfield
(eigenvector), respectively. With vector-field schemes, it is also possible to obtain
polarization information regarding the eigenfield and the derived parameters such as
polarization mode dispersion (PMD, birefringence), polarization extinction ratio and
dichroic ratio. The eigenfields can be compared with experimental results, although one
of the problems is that the intensity distribution after propagation in the fiber depends on

the initial field (input beam profile).

Figure 5-13: Experimental results on far-field intensity distribution of an empty PCF 070124
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Figure 5-13 shows some experimental results on far-field intensity distributions of an
empty PCF 070124, with the same light source but different initial fields tuned by coupling
conditions. Provided that one can orientate the PCF precisely, with polarimetric elements
it is also possible to obtain information regarding polarization states of the fields. By
observing the speckle effect, we find that light fields at the output of the empty PCF
070124 are spatially coherent.

We perform vector-field FDFD on the host PCF with the simulation parameters shown in
Table 5-2. Edge-cutting was performed to reduce spurious results. An exemplary set of
eigenfields (Ex & Ey) at A = 555nm is shown in Figure 5-16, and the corresponding
effective refractive indices of the first six modes are given in Table 5-3.

As clearly seen, the first two modes are degenerate upon polarizations. To justify the
simulations, we perform convergence analysis with PCF 070124 and the results are shown
in Figure 5-14. The more details eigenfield patterns of the first two modes are given in
Figure 5-17 (E-formulation, Ex-Ey-Hz) and Figure 5-18 (H-formulation, Hx-Hy-Ez). Such
degeneracy has been reported both theoretically (Steel et al., 2001) and numerically
(Koshiba and Saitoh, 2001) in literature.

Table 5-2: Vector-field FDFD simulation parameters for PCF 070124 and the PLCF sample

Calculation Window 50um (x) by 43.75um (y)
Grid Size 0.125um
Index-Averaging Factor 4

Table 5-3: Vector-field FDFD results on n. of the first six modes in PCF 070124

Mode neg, E-Formulation neg, H-Formulation
1°t 1.461344 1.461344
2" 1.461344 1.461344
3™ 1.460455 1.460455
4t 1.460450 1.460450
5t 1.460452 1.460452
6" 1.460452 1.460452

In order to compare the field patterns in experiments and in numerical simulations, we
sort out the core-guiding modes of the empty PCF from our simulations with more

eigenvalues calculated. The result for Ex is shown in Figure 5-15.
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Figure 5-14: Convergence curves of the fundamental n.; of PCF 701024 with respect to the

number of grids calculated with scalar-field FDFD (top) and vector-field FDFD (bottom)
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Figure 5-15: Eigenfields (Ex) of the core-guiding modes of PCF 070124
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Comparing the experimental and numerical results of field patterns, we can see that the principle
components of the core-guiding modes often possess the Cg six-fold rotational symmetry.
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Figure 5-16: Exemplary set of eigenfields of PCF 070124 at A = 555nm calculated with
vector-field FDFD (top: Ex, bottom: Ey)
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Figure 5-17: The 1* and 2™ sets of eigenfields in E-formulation (Ex-Ey-Hz) of PCF 070124
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Figure 5-18: The 1% and 2" sets of eigenfields in H-formulation (Hx-Hy-Ez) of PCF 070124
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5.7.2 Transmission Spectrum

One characteristic that can be easily measured with our experimental setup is the
transmission spectrum shown in Figure 5-19. We can see that the transmission spectrum
of an empty PCF 070124 is continuous. This can be compared numerically if we perform
suitable simulations over specific range of wavelengths. In our simulations we find that
similar eigenfield patterns, as shown in Figure 5-16, exist for different wavelengths. This
coincides with the continuous transmission spectrum in experiments. The fundamental
neg With respect to wavelength is shown in Figure 5-20.
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Figure 5-19: Experimental results on transmission spectrum of an empty PCF 070124
The blue line shows the normalized spectrum of the light source together with the probing
single-mode fiber. The black line shows the normalized spectrum of the empty PCF 070124,
together with the light source and the probing single-mode fiber. The green shade shows the
uncertainty of the measurements. We note that the background (blue) and the data (black)
were not measured simultaneously and there might have been fluctuations in the spectrum

of the light source.
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Figure 5-20: Numerical results on fundamental n.4 vs. wavelength of PCF 070124

5.8 Experimental and Numerical Results for the PLCF Sample

5.8.1 Field Intensity Distribution

First we observe the far-field intensity distribution of the PLCF sample (Figure 5-21).

Figure 5-21: Experimental result on far-field intensity distribution of the PLCF sample
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The far-field intensity distribution does not show much information, owing to the lossy
nature of PLCF. To verify guiding of light by the PLCF but not the whole fiber strand, we
proceed to near-field intensity distribution in Figure 5-22 under different light levels. It is
clearly seen that the light is guided within the core when the light level is low. However,
when the light level is high, more light leaks to the regions outside the photonic crystal
cladding and is thus guided by the whole fiber strand. One concern that might rise is
whether this portion of the guided light affects the characteristics of the PLCF.

Figure 5-22: Experimental results on near-field intensity distribution of the PLCF sample at

different light levels

We perform vector-field FDFD on the PLCF sample with the same simulation parameters
as shown in Table 5-2, along with the edge-cutting technique to reduce spurious results.
An exemplary set of eigenfields (Ex, Ey) at A = 686nm is shown in Figure 5-24. The
corresponding neg of the first two modes are 1.455222 and 1.455219, which appears to
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show that the two polarizations are not degenerate. However, the difference is so small
that we cannot conclude on the degeneracy.

It is worth to recall here that for the PLCF of interest, the refractive indices (n,, ne) of
6CHBT is larger than that of silica (nsjics). Accordingly, in the simulations for the PLCF
sample, guiding modes within the silica core are obtained as a result of the PBG-guiding
mechanism.

On the other hand, in addition to the core-guiding modes and the cladding modes as seen
for the empty PCF, some hole-guiding modes are also observed (Figure 5-23). Such
possibilities of modes further increase the number of spurious results when searching for
core-guiding modes. As seen in Figure 5-23, the hole-guiding modes are often
characterized by neg larger than nji,. Consequently, if we can specify the range of
eigenvalues to be sought during the eigen solving process, as discussed in Section 4.5.3,
we can possibly reduce the number of spurious results.

Another important observation from the eigenfield patterns is that, unlike the
index-guiding empty PCF 070124, the eigenfield patterns of the PBG-guiding PLCF sample
change sharply with wavelength, and for some wavelengths, there exist no core-guiding
modes within the simulation range. The simulation range is the maximum absolute
difference between the n. calculated and ngjjce. It depends largely on the amount of

spurious results, as will be discuss in the next section.

.m-.caaoaem.m..
‘cm.mo' ’allc.uu.
lam.cﬁ@ida.u".
neff = 1454942 neff - 1454186 neff = 1454139
ng = 1.455824 n, = 1.516220 n. =1.665520
Nt = 1.454000 Ness = 1.457683 Ny = 1.511725

@00

This one: Initial guess = n,

Figure 5-23: Types of modes (Ex) of the PLCF sample calculated with vector-field FDFD
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With vector-field FDFD, the three components of the eigenfields are obtained and shown
in Figure 5-25 and Figure 5-26. It is worth mentioning here that these are PBG-guiding

modes and have very different field patterns compared to those of the empty PCF host

shown in Figure 5-17 and Figure 5-18.
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Figure 5-24:

FDFD (top: Ex, bottom: Ey)

Exemplary set of eigenfields of the PLCF sample at A = 686nm with vector-field
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Figure 5-25: The 1% and 2" sets of eigenfields in E-formulation (Ex-Ey-Hz) of the PLCF sample

- N W s OO0

4
x 10

1* mode 2" mode

Figure 5-26: The 1* and 2" sets of eigenfields in H-formulation (Hx-Hy-Ez) of the PLCF sample
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5.8.2 Transmission Spectrum

The transmission spectrum of the PLCF sample is also measured for comparison with
numerical results (Figure 5-27). We see that there exist several transmission peaks in the
spectral range of the light source. Such selectivity on wavelength is characteristic of the
PBG-guiding mechanism. Figure 5-28 shows the numerical results on fundamental neg vs.
wavelength of the PLCF sample, with the experimental results on transmission spectrum
in background for comparison. The simulation is set to seek the first 48 eigenvalues and
the corresponding eigenfields (eigenvectors). The core-guiding modes of each wavelength
are then manually inspected and their effective refractive indices are extracted. As
previously stated, the eigenfield patterns of the PBG-guiding PLCF sample change sharply
with wavelength, and for some wavelengths, there exist no core-guiding modes within the
simulation range. In view of the transmission spectrum, this coincides with the discrete
transmission bands in experiments. The numerical simulation also shows ‘gaps’ in the
transmission spectrum, but does not match entirely with the experimental results (Figure
5-28).

We would like to note the problem of spurious modes. In Figure 5-28 the peach shade
shows the range of eigenvalues obtained in the simulations. At the nodes of the shade,
spurious results might have ruined the simulation. However, it is also possible that at and
close to these nodes various cladding modes and hole-guiding modes exist. As a result,
the PLCF sample no longer functions as an optical waveguide.

To verify the results of our simulations, we first perform convergence analysis, and then
try to extend the range of the simulations. The convergence curves are shown in Figure
5-29 and Figure 5-30, with respect to number of grids and grid size in A, respectively. We
note that the 1% and 2™ core-guiding modes mentioned in the figures are as those shown
in Figure 5-24. A second note is that because these modes have very close neg, sometimes
the 1% mode is quasi-x-polarized while sometimes the 2" mode is quasi-x-polarized.
When the neg of the two quasi-polarized modes are equal, the modes are degenerate.
From Figure 5-29 and Figure 5-30 we can see that, with sufficient number of grids, the
fundamental modes are degenerate. By fitting the curve with respect to the square of grid
size, we obtain 1.455170 as a reference value for the fundamental n.g. Using this

reference, we see that with 800 grids, the simulation converges to about 1ppm.
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Figure 5-27: Experimental results on transmission spectrum of the PLCF sample

The red line shows the normalized spectrum of the light source together with the probing
single-mode fiber and the empty PCF 070124. The blue line shows the normalized spectrum
of the PLCF sample, together with the light source, the probing single-mode fiber, and the
empty PCF 070124. The orange and green shades show the uncertainties of the

measurements.
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Figure 5-28: Numerical results on fundamental n.4 vs. wavelength of the PLCF sample

The eigenvalue range of simulations is shaded in peach. The transmission spectrum is
normalized to [1.448 1.468] in background for comparison among the transmission peaks

and the obtained bands of core-guiding modes.
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Figure 5-29: Convergence curves of the PLCF sample with respect to the number of grids
calculated with vector-field FDFD
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Figure 5-30: Convergence curve of the PLCF sample with respect to the square of grid size
calculated with vector-field FDFD
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5.9 Discussions and Numerical Study of PLCF

In this section we like to discuss some possible properties of PLCF observed in numerical
simulations.

5.9.1 Polarization and Birefringence

With vector-field FDFD, we can easily obtain negin two orthogonal polarization states, and
this in turn gives us information on the birefringence and polarization mode dispersion of
the fiber. Also, for some configurations, hybrid guiding (index-guiding in one polarization
and PBG-guiding in the other) has been reported (Sun and Chan, 2007; Zografopoulos and
Kriezis, 2009) and with the vector-field FDFD, it may also be possible to observe the hybrid
guiding mechanism.

5.9.2 Rotation of Liquid Crystals in the Transverse Plane of the PLCF

As discussed in Chapter 4, the vector-field FDFD we implemented is able to take into
account transverse anisotropies. In the context of the thesis so far, we have not taken
advantage of this functionality. Instead, we have spent more effort on validating the
accuracy and effectiveness of the implemented FDFDs. Some previous reports have shown
the significant tunability of PLCFs with external electric field (Ertman et al., 2009).
Provided that we can align the liquid crystal molecules within the PLCF from the planar
configuration (Figure 5-4a) to the transverse configuration (Figure 5-4b), it can be an
interesting aspect to observe the effects of the rotation of LC molecules in the transverse
plane. The vector-field FDFD we have implemented is able to simulate this kind of
configurations of LC.
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6 Conclusions and Outlook

In this thesis we have shown that, based on two curl Maxwell equations with finite
difference approximation, together with Yee’s staggered mesh, the photonic bandgap
guiding mechanism was observed in addition to the index-guiding mechanism for light
propagation in photonic liquid crystal fibers.

The scalar-field FDFD implemented is based on direct 2" order finite differences in space,
and is capable of characterizing relatively simple fiber geometries with fairly accurate
results. However, we have shown both theoretically and numerically, qualitatively and
guantitatively, the limit of the scalar-field formulation by comparison with known
analytical values. On the other hand, the vector-field FDFD implemented is based on 1%
order finite differences with matrix multiplication, and is capable to deal with more
complicated fiber geometries. Nevertheless, the size of the eigenvalue problem increases
largely as the vector nature of fields is considered, and therefore demands significant
computational effort.

We implemented the vector-field FDFD first proposed by Zhu and Brown, 2002, and
extended the formulation to include transverse anisotropies. Although through the
context of this thesis we have not really used such additional feature, but as long as we
have verified the vector-field FDFD, it can lead to interesting aspects of the dynamic
studies of PLCFs.

Despite the insufficiency on computational power and time, we have tried to compare the
numerical results with experimental results. Gaps in the transmission spectrum are
observed both experimentally and numerically. The discrepancy might have arisen from
both the experimental and the numerical aspects. Our preliminary observation regarding
the simulation on PLCFs shows that lack of computational resolution might have led to
inaccuracies and errors. On the other hand, the experimental results also have to be

validated, particularly the molecular arrangement of the liquid crystal inside the host PCF.

Although the comparison was carried out in a more qualitative way, it nevertheless
showed that the effectiveness of the implemented vector-field FDFD scheme. It brought
excitement, together with more challenges. We have noted that spurious modes
appeared to be an interesting issue to be understood, but owing to lack of time and

knowledge, we have only tried a very primitive way to solve the issue, that is to cut away
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the higher-refractive region outside the photonic crystal cladding. Some improvements
are gained, but still a lot more are to be pursued.

Now that we have assessed and verified the applicability of FDFDs, the vector-field
formulation in particular, to model light propagation in PLCFs, the next possible stage of
work shall be dedicated to comprehensive and rigorous study of numerical results
regarding PLCF geometries with various computational setups. In this way, more
information can be obtained for further orientation on possible improvements regarding
the FDFD schemes. On the experimental side, more precise control over the LC molecular
configuration and higher quality on the manufacture of PCFs will give more valuable
information on verification and benchmarking of the numerical schemes. By progressing
these two aspects of future work, it can be foreseen that in the near future PLCFs can find
potential applications in the field of optics with numerical design tools that greatly
facilitate the manufacturing process.

One part of the objective of the thesis is accessibility and efficiency. In the thesis this has
not been discussed explicitly. If some words are to fall on these two aspects,
‘unsatisfactory but acceptable’ shall be close. The major simulations were performed on a
normal laptop. The resolution of the simulation was mostly limited by the software limit
than the hardware limit. As for the time consumed, depending on the number of
eigenvalues to be sought, the simulation itself for one single wavelength with highest
available resolution takes between 5 to 10 minutes with Computer 1 in Appendix D.
Exporting the results into figures also consumes quite unexpected amount of time. The
time for simulations for wavelengths over a spectral range depends on the spectral

resolution. An overnight run is normally required for 1nm spectral resolution.

This thesis sets its focus on finite difference methods in frequency domain. However, we
have always kept in mind the possible usefulness of beam propagation methods in the
study of PLCFs. It can be interesting to combine and compare the FDFDs and the BPMs.
Even if we limit ourselves first to FDFDs, there are still a lot more aspects can be further
considered in the simulation for PLCFs. For example, the order parameter which accounts
for the molecular arrangement of liquid crystal, especially when we want to study the

temperature dependent behaviors of PLCFs.

Last, we like to mention the aspects in view of computer science. Throughout the thesis
we have tried to set up everything from scratch. We derived from theory the master
equations for FDFD simulations and implemented the code library in MATLAB. However,

one thing that we did not step into was the eigen solver. We have only fundamental
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knowledge regarding the eigs function, which ports in the Arnoldi routine for sparse
matrix eigen problems. Since the simulations for PLCFs have been shown to be demanding,
the performance of the FDFD schemes may be improved largely through the study of
more efficient algorithms, implementations, and parallel computing architectures.
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Appendix A

The

implementation including both scalar-field and vector-field FDFDs consists of the

following functions written as MATLAB® m-files:

1)

SR 3R 3R 3R 3R 3R R R 3R R ¥ X

%
%
%

o
o

o

o

%
%
%
%
%
%
%
%

o

eigensolve

Eigen Solver: eigs, MATLAB interface with ARPACK, Arnoldi Package
Recast Eigen Vectors into Eigen Fields

Output

FF(x, y, eigen index, field index): full eigen field matrix

eig value: eigen values

flag_conv: if the eigenvalues are converged, see MATLAB help eigs

Input

MM: global matrix to be solved

n_ev: number of eigen values desired

mx, ny: calculation window dimensions

n_fields: number of fields that are coupled in the global matrix

Example
P |Ex| = beta”2 |Ex| --> n_field = 2
|Ey| |Ey| (P = global matrix, eig value = beta”2)
R |Ex| = beta |Ex| --> n_field = 4
|Ey| |Ey| (R = global matrix, eig_value = beta)
|Hx| [Hx|
[Hy| [Hy |

function [FF, eig value, flag _conv] = eigensolve(MM, n_ev, guess, mx, ny, n_fields)

nm = ny*mx;
options.tol = 1le-7; options.disp =
[eig_vector, eig value, flag_conv]
FF = zeros(ny, mx, n_ev, n_fields);
for ii = 1:1:n_ev
FF_all = reshape(eig_vector(:,ii),nm,n_fields);
for jj 1:1:n_fields
FF(:,:,ii,jj) = reshape(FF_all(:,jj),mx,ny)";
end
end

0; options.isreal = isreal(MM);
= eigs(MM, speye(size(MM)), n_ev, guess, options);

end

2)

epr_nlc.m

function [epr_lc_xx, epr_lc_xy, epr_lc_xz, epr_lc_yx, epr_lc_yy, epr_lc_yz, epr_lc_zx,
epr_lc_zy, epr_lc_zz] = epr_nlc(no, ne, theta, phi)

delta = ne.”2-no.”2;

epr_lc_xx = no.”2 + delta.*(sin(theta)).”2.*(cos(phi)).”2;
epr_lc_yy = no.”2 + delta.*(sin(theta)).”2.*(sin(phi)).”2;
epr_lc_zz = no.”2 + delta.*(cos(theta)).”2;
epr_lc_xy = delta.*(sin(theta)).”2*sin(phi).*cos(phi);
epr_lc_yx = epr_lc_xy;
epr_lc_xz = delta.*sin(theta).*cos(theta).*cos(phi);
epr_lc_zx = epr_lc_xz;
epr_lc_yz = delta.*sin(theta).*cos(theta).*sin(phi);
epr_lc_zy = epr_lc_yz;
end
3) finite_diff.m

%
%

Finite difference according to Yee mesh and BCs
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bc_e, bc_h: @ for zero boundary condition (Dirichlet)
1 for Neumann boundary condition on x-boundary (d/dx = 0)
2 for Neumann boundary condition on y-boundary (d/dy = 0)
3 for Neumann boundary condition on x- and y- boundaries
e for electric field, h for magnetic field

ENINE NN

function [Ux, Uy, Vx, Vy] = finite_diff(mx, ny, dx, dy, bc_e, bc_h)
nm = ny*mx;

Kl1_el = 1:1:nm; L1 el = 1:1:nm; D1_el = ones(1,nm);

K1 e2 = 1:1:nm; L1 e2 = 1:1:nm; D1_e2 = ones(1,nm);
K1_e3 = 1:1:nm-1; L1 e3 = 2:1:nm;

K1_e3t= ones(ny,1); L1_e3t = ones(1l,mx); L1_e3t(end) = 0;

D1_e3 = reshape((K1l_e3t*L1 e3t)',1,nm); D1 _e3 = D1_e3(1l:end-1);
Kl_e4 = 1:1:nm-mx; L1_e4 = mx+1l:1:nm; D1_e4 = ones(1,nm-mx);
K1_hl = 1:1:nm; L1 hl1 = 1:1:nm; D1_hl = ones(1,nm);
K1_h2 = 1:1:nm; L1 _h2 = 1:1:nm; D1_h2 = ones(1,nm);
K1_h3 = 2:1:nm; L1 h3 = 1:1:nm-1; D1_h3 = D1_e3;

K1_h4 = 1+mx:1:nm; L1_h4 = 1:1:nm-mx; D1_h4 = ones(1,nm-mx);

if (bc_e == 1)
D1_el(mx:mx:nm) = 0;
elseif (bc_e == 2)
D1_e2(nm-mx+1l:nm) = 0;
elseif (bc_e == 3)
D1_el(mx:mx:nm) = ©; D1_e2(nm-mx+1l:nm)
end
if (bc_h == 1)
D1_h1(1:mx:nm-mx+1)
elseif (bc_h == 2)
D1_h2(1:mx) = 0;
elseif (bc_h == 3)
D1_h1(1:mx:nm-mx+1) = @; D1_h2(1:mx) = 0;

I
()
e

0;

end

Ux = (1/dx)*sparse([K1_el K1_e3], [L1_el L1_e3], [-1.*D1_el D1_e3]);

Uy = (1/dx)*sparse([K1l_e2 K1_e4], [L1_e2 L1 _e4], [-1.*D1_e2 D1_e4]);

Vx = (1/dy)*sparse([K1_h1 K1_h3], [L1_h1 L1_h3], [D1_hl -1.*D1_h3]);

Vy = (1/dy)*sparse([K1_h2 K1_h4], [L1_h2 L1_h4], [D1_h2 -1.*D1_h4]);
end

4) geometry {SIF | HoF | HOF3}.m

function Epri = geometry_ SIF(mx, dx, ny, dy, epr_1, epr_2, r_core, ia_factor, padding)
if (ia_factor == 1)
X1 = -mx/2:1:mx/2-1; X1
Y1 = -ny/2:1:ny/2-1; Y1
[X2,Y2] = meshgrid(X1,Y1);
Epri = ones(ny,mx).*epr_2;
Epri((X2.72+Y2.72)<=r_core”2) = epr_1;
elseif (ia_factor > 1)
% Interpolation

X1.*dx;
Y1.*dy;

mxi = (mx+padding.*2).*ia_factor;

nyi = (ny+padding.*2).*ia_factor;

dxi = dx./ia_factor;

dyi = dy./ia_factor;

X1i = -mxi/2:1:mxi/2-1; X1i = X1i.*dxi;
Y1i = -nyi/2:1:nyi/2-1; Y1i = Y1i.*dyi;

[X2i,Y2i] = meshgrid(X1i,Y1i);
Epri = ones(nyi,mxi).*epr_2;
Epri((X2i.”2+Y2i.”~2)<=r_core”2) = epr_1;
end
end

% Generate hexagonal Holey Optical Fiber (HoF) geometry with given

% parameters

%

% mx dx ny dy: number-of-grids and grid-size

% epr_h: relative permittivity of the host material (e.g. silica)

% epr_g: relative permittivity of the guest (hole) material (e.g. air)

% ia_factor: interpolation factor

% padding: in order to perform index-averaging on the border, additional
% padding is required in the interpolation.

% For general purposes, set padding = 2. However, for specific
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o,

% index-averaging schemes, padding = 1 is enough.
%

function Epri = geometry_HoF(mx, dx, ny, dy, epr_h, epr_g, pitch, r_air, ia_factor, padding)
border = ceil(mx*dx/pitch/2)+2; border = border+mod(border,2);
hp = pitch/2;
if (ia_factor == 1)
X1 = -mx/2:1:mx/2-1; X1
Y1l = -ny/2:1:ny/2-1; Y1
[X2,Y2] = meshgrid(X1,Y1);
Epri = ones(ny,mx).*epr_h;
for jj = -border:2:border
for ii = -border:2:border
if (ii~=0 || jj~=0)
Epri(((X2-hp*ii).”2+(Y2-hp*sqrt(3)*jj)."2)<=r_air”2) = epr_g;

X1.*dx;
Y1.*dy;

end
end
end
for jj = -border-1:2:border+l
for ii = -border-1:2:border+l
Epri(((X2-hp*ii).”2+(Y2-hp*sqrt(3)*jj)."2)<=r_air”2) = epr_g;
end
end

elseif (ia_factor > 1)

mxi = (mx+padding.*2).*ia_factor;

nyi = (ny+padding.*2).*ia_factor;

dxi = dx./ia_factor;

dyi = dy./ia_factor;

X1i = -mxi/2:1:mxi/2-1; X1i = X1i.*dxi;
Y1i = -nyi/2:1:nyi/2-1; Y1i = Y1i.*dyi;

[X2i,Y2i] = meshgrid(X1i,Y1i);
Epri = ones(nyi,mxi).*epr_h;
for jj = -border:2:border
for ii = -border:2:border
if (ii~=0 || jj~=0)
Epri(((X2i-hp*ii).”~2+(Y2i-hp*sqrt(3)*jj).~2)<=r_air~2) = epr_g;

end
end
end
for jj = -border-1:2:border+l
for ii = -border-1:2:border+l
Epri(((X2i-hp*ii).”*2+(Y2i-hp*sqrt(3)*jj)."2)<=r_air*2) = epr_g;
end
end
end
end

function Epri = geometry_HoF3(mx, dx, ny, dy, epr_h, epr_g, pitch, r_air, ia_factor, padding)
% border = ceil(mx*dx/pitch/2)+2; border = border+mod(border,2);
border = 6;
hp = pitch/2;
if (ia_factor == 1)
X1 = -mx/2:1:mx/2-1; X1 = X1.*dx;
Y1l = -ny/2:1:ny/2-1; Y1 = Y1.*dy;
[X2,Y2] = meshgrid(X1,Y1);
Epri = ones(ny,mx).*epr_h;
Epri(abs(X2)>3.5*pitch|abs(Y2)>3.5%pitch*0.866) = 1;
Epri(abs(Y2)>(-1.*sqrt(3).*(X2-3.5.*pitch))) = 1;
Epri(abs(Y2)>( 1.*sqrt(3).*(X2+3.5.*pitch))) = 1;
for jj = -border+4:2:border-4
for ii = -(border-abs(jj)):2:(border-abs(jj))
if (iiv=0 || jj~=0)
Epri(((X2-hp*ii).”2+(Y2-hp*sqrt(3)*jj)."2)<=r_air"2) = epr_g;
end
end
end
for jj = -border+3:2:border-3
for ii = -(border-abs(jj)):2:(border-abs(jj))
Epri(((X2-hp*ii).”2+(Y2-hp*sqrt(3)*jj)."2)<=r_air"2) = epr_g;
end
end
elseif (ia_factor > 1)
mxi = (mx+padding.*2).*ia_factor;
nyi = (ny+padding.*2).*ia_factor;
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dxi = dx./ia_factor;
dyi = dy./ia_factor;
X1i = -mxi/2:1:mxi/2-1; X1i = X1i.*dxi;
Y1i = -nyi/2:1:nyi/2-1; Y1i = Y1i.*dyi;

[X2i,Y2i] = meshgrid(X1i,Y1i);
Epri = ones(nyi,mxi).*epr_h;
Epri(abs(X2i)>3.5*pitch|abs(Y2i)>3.5*%pitch*@.866) = 1;
Epri(abs(Y2i)>(-1.*sqrt(3).*(X2i-3.5.*pitch))) = 1;
Epri(abs(Y2i)>( 1.*sgrt(3).*(X2i+3.5.*pitch))) = 1;
for jj = -border+4:2:border-4
for ii = -(border-abs(jj)):2:(border-abs(jj))
if (ii~=0 || ji~=0)
Epri(((X2i-hp*ii).~2+(Y2i-hp*sqrt(3)*jj).”2)<=r_air~2) = epr_g;
end
end
end
for jj = -border+3:2:border-3
for ii = -(border-abs(jj)):2:(border-abs(jj))
Epri(((X2i-hp*ii).”~2+(Y2i-hp*sqrt(3)*jj).~2)<=r_air*2) = epr_g;
end
end
end
end

5) index_avg.m

Perform index averaging according to specified mesh configuration

Epr_in: input permittivity map

mx, ny: output size of the permittivity map

ia_factor: interpolation factor

padding: in order to perform index-averaging on the border, additional
padding is required in the interpolation.
For general purposes, set padding = 2. However, for specific
index-averaging schemes, padding = 1 is enough.

pos_x, pos_y: relative positions in the mesh configuration

S 3R 3R R 3R R W3R R

eps_x: relative permittivities Erxx, Erxy, Erxz
eps_y: relative permittivities Eryx, Eryy, Eryz
eps_z: relative permittivities Erzx, Erzy, Erzz

% Examples with a common Yee's staggered mesh

%

% Dy, Ey,Hx Hz | Erxx Erxy Erxz |
% | Erxy Eryy Eryz |
% Ez Dx, Ex, Hy | Erzx Erzy Erzz
%

%

%

%

% 1) If we attach eps_z(k,l) to Ez with (pos_x, pos_y) = (0,0)

% Then

% eps_x(k,1), attached to Dx/Ex, will have (pos_x, pos_y) = (1,0)
% eps_y(k,1), attached to Dy/Ey, will have (pos_x, pos_y) = (0,1)
%

% 2) If we attach eps_z(k,1) to Hz with (pos_x, pos_y) = (0,0)

% Then

% eps_x(k,1), attached to Dx/Ex, will have (pos_x, pos_y) = (0,-1)
% eps_y(k,1), attached to Dy/Ey, will have (pos_x, pos_y) = (-1,0)

function Epr_out = index_avg(Epr_in, mx, ny, ia_factor, padding, pos_x, pos_y)
if (ia_factor==1)
Epr_out = Epr_in;
elseif (ia_factor>1)
Epr_out = zeros(ny,mx);
hf = ia_factor/2;

for iy = 1:1:ny;

for ix = 1:1:mx;
ya = (iy+padding)*ia_factor + 1 - hf;
yb = (iy+padding)*ia_factor + 1 + hf;
xa = (ix+padding)*ia_factor + 1 - hf;
xb = (ix+padding)*ia_factor + 1 + hf;
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Epr_out(iy,ix) =
sum(sum(Epr_ 1n(ya+hf*pos y:yb+hf*pos_y,xa+hf*pos_x:xb+hf*pos_x))) .
./ (2.*%hf+1)72;
end
end
end
end

6) n6CHBT_v3{e20 | e30 | 020 | 0 30}.m

function n = n6CHBT_v3e20(lambda)
lambda_nme = 156.7;
lambda nm = lambda.*1000;
G = 2. 569
n =1+ G.*le-5.*lambda_nm.”2.*lambda_nmo.”2 ...
./(lambda_nm.~2-lambda_nme.~2);
end

function n = n6CHBT_v3e30(lambda)
lambda_nme = 154.6;
lambda_nm = lambda.*1000;
G = 2.584;
n =1+ (G.*1e-5.*(lambda_nm.”2).*(lambda_nmo.”2) ...
./(lambda_nm.”2-1lambda_nm@.”2));
end

function n = n6CHBT_v3020(lambda)
lambda_nme = 125.8;
lambda_nm = lambda.*1000;
G = 3.147;
n =1+ G.*le-5.*lambda_nm.”2.*lambda_nmo.”2 ...
./(lambda_nm.”2-1lambda_nmo."2);

end

function n = n6CHBT_v3030(lambda)
lambda_nme = 126.8;
lambda_nm = lambda.*leee;

G = 3.099;
n =1 + G.*1le-5.*lambda_nm.”2.*1lambda_nmo.”2 ...
./(lambda_nm.”~2-1lambda_nm@."2);
end

7) nSilica {20 | 25 | 29 | 34 | 40} .m

function n = nSilica2@(lambda)
1.311382;

0.794229;

0.010951;

0.999525;

100;
= B.*(lambda.”2)./(lambda.”2-C);
= D.*(lambda.”2)./(lambda.”2-E);

n = sqrt(A + n2 + n3);
end

SSmMOUON®@>

2
3

function n = nSilica25(lambda)

1.309557;

0.796189;

0.010936;

0.986365;

100;

n2 = B.*(lambda.”2)./(lambda.”2-C);

n3 = D.*(lambda.”2)./(lambda.”2-E);
n = sqrt(A + n2 + n3);

end

moMN >
oo
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function n = nSilica29(lambda)
1.308097;

0.797703;

0.010924;

0.975837;

100;
= B.*(lambda.”2)./(lambda.”2-C);
= D.*(lambda.”2)./(lambda.”2-E);
sqrt(A + n2 + n3);

ONwW>
w N
LI L | | I |

asSssSm

]
>

function n = nSilica34(lambda)
1.306272;

0.799595;

0.010909;

0.962676;

100;
= B.*(lambda.”2)./(lambda.”2-C);
= D.*(lambda.”2)./(lambda.”2-E);
= sqrt(A + n2 + n3);

function n = nSilica4@(lambda)

A = 1.304082;
B = 0.801867;
C = 0.010891;
D = 0.946884;
E = 100;
n2 = B.*(lambda.”2)./(lambda.”2-C);
n3 = D.*(lambda.”2)./(lambda.”2-E);
n = sqrt(A + n2 + n3);

end

8) nSi02.m

function n = nSi02(lambda)
al = 0.6961663;
a2 = 0.4079426;
a3 = 0.8974794;
bl = 0.0864043;
b2 = 0.1162414;
b3 = 9.896161;
nl = al.*lambda.”2./(lambda.”2-b1.72);
n2 = a2.*lambda.”2./(lambda.”2-b2.72);
n3 = a3.*lambda.”2./(lambda.”2-b3.72);

n = sqrt(1 + nl + n2 + n3);
end

9) plot_field.m

% Plot nine eigen fields: l+offset to 9+offset

function plot_field(fig, X1, Y1, field, row, col, offset)
figure(fig);
set(gcf, 'Renderer', 'zbuffer');
for ii = 1:1:row*col
subplot(row,col,ii);
set(gca, 'FontSize', 6);
surf(X1,Y1,field(:,:,ii+offset));
grid off;
axis equal; colorbar, shading flat, view([© © 1]);
set(colorbar, 'FontSize', 6);
x1im([min(X1) max(X1)]), ylim([min(Y1) max(Y1)]);
end
end
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10) plot_field_png.m

function plot_field_png(pngfile, X1, Y1, field, row, col, offset)
= gcf;
set(h, 'Renderer', 'zbuffer');
set(h, 'PaperPositionMode', 'auto');
set(h, 'PaperPositionMode', 'manual');
set(h, 'PaperPosition', [100 100 12000 6000]);
set(h, 'Units', 'points');
set(h, 'PaperUnits', 'points');
set(h, 'PaperSize', [12200 6200]);

3R R 3 R X

for ii = 1:1:row*col
subplot(row,col,ii);
set(gca, 'FontSize', 6);
surf(X1,Y1,field(:,:,ii+offset));
axis equal; colorbar, shading flat, view([© 0 1]);
set(colorbar, 'FontSize', 6);
x1im([min(X1) max(X1)]), ylim([min(Y1) max(Y1)]);
end
% print(h, '-zbuffer', '-dpng', '-r900', pngfile);
% print(h, '-zbuffer', '-dpng', '-r60@', pngfile);
print(h, '-zbuffer', '-dpng', '-r300', pngfile);
% close(h);
end

11) plot_geometry.m

% Plots permittivity geometry to the assigned figure

% | Erxx Erxy Erxz |
% | Erxy Eryy Eryz |
% | Erzx Erzy Erzz |

function plot_geometry(fig , X1, Y1, Epr_xx, Epr_xy, Epr_xz, Epr_yx, Epr_yy, Epr_yz, Epr_zx,
Epr_zy, Epr_zz)
figure(fig);
= gcf;
set(h, 'Renderer', 'zbuffer');

subplot(3,3,1);

surf(X1,Y1, (Epr_xx)), colorbar, shading flat, view([0 © 1]);
title('xx'); xlabel('x (micron)'); ylabel('y (micron)');

axis equal; xlim([min(X1) max(X1)1), ylim([min(Y1) max(Y1)]);

subplot(3,3,2);

surf(X1,Y1, (Epr_xy)), colorbar, shading flat, view([0 © 1]);
title('xy'); xlabel('x (micron)'); ylabel('y (micron)');

axis equal; xlim([min(X1) max(X1)1), ylim([min(Y1) max(Y1)]);

subplot(3,3,3);

surf(X1,Y1, (Epr_xz)), colorbar, shading flat, view([0 © 1]);
title('xz'); xlabel('x (micron)'); ylabel('y (micron)');

axis equal; xlim([min(X1) max(X1)]), ylim([min(Y1) max(Y1)]);

subplot(3,3,4);

surf(X1,Y1, (Epr_yx)), colorbar, shading flat, view([0 © 1]);
title('yx'); xlabel('x (micron)'); ylabel('y (micron)');

axis equal; x1lim([min(X1) max(X1)]), ylim([min(Y1l) max(Y1)]);

subplot(3,3,5);

surf(X1,Y1, (Epr_yy)), colorbar, shading flat, view([0 © 1]);
title('yy'); xlabel('x (micron)'); ylabel('y (micron)');

axis equal; xlim([min(X1) max(X1)1), ylim([min(Y1l) max(Y1)]);

subplot(3,3,6);
surf(X1,Y1, (Epr_yz)), colorbar, shading flat, view([0 © 1]);
title('yz'); xlabel('x (micron)'); ylabel('y (micron)');
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axis equal; xlim([min(X1) max(X1)1), ylim([min(Y1l) max(Y1)]);

subplot(3,3,7);

surf(X1,Y1, (Epr_zx)), colorbar, shading flat, view([@ © 1]);
title('zx'); xlabel('x (micron)'); ylabel('y (micron)');

axis equal; x1lim([min(X1) max(X1)]), ylim([min(Y1l) max(Y1)]);

subplot(3,3,8);

surf(X1,Y1, (Epr_zy)), colorbar, shading flat, view([0 © 1]);
title('zy'); xlabel('x (micron)'); ylabel('y (micron)');

axis equal; xlim([min(X1) max(X1)1), ylim([min(Y1l) max(Y1)]);
subplot(3,3,9);

surf(X1,Y1, (Epr_zz)), colorbar, shading flat, view([@ © 1]);
title('zz'); xlabel('x (micron)'); ylabel('y (micron)');

axis equal; x1lim([min(X1) max(X1)]), ylim([min(Y1l) max(Y1)]);

end

12) sFDFD.m

% Scalar-Field Finite-Difference Frequency Domain
% 3-term FD

function M = sFDFD(lambda, mx, ny, dx, dy, Er2)
cO = 299792458e6; % speed of light (um)
w_ang = 2.*pi.*c@./lambda; % angular frequency

nm = ny*mx;

Kl_a = 1:1:nm; L1_a = 1:1:nm;

D1_a = ones(ny,mx);

D1 _a = D1_a.* ((-2/dx.”2) + (-2/dy.”2) + (Er2.*w_ang.”2./c0.72));
D1_a = reshape(D1_a',1,nm);

Kl b = 1:1:nm-1; L1_b = 2:1:nm;

K1_bt = ones(ny,1); L1_bt = ones(1,mx); L1 _bt(end) = @;

D1_b = reshape((K1_bt*L1 _bt)', 1 , nm); D1_b = D1_b(1l:end-1);
Kl1_c = 1:1:nm-mx; L1_c = mx+1l:1:nm;
D1_c = ones(1,nm-mx);
M = sparse([K1_a Ki_b K1_b+1 K1_c K1_c+mx],
[L1_a L1 b L1 b-1 L1 ¢ L1 c-mx], ...
[D1_a D1_b./dx.”~2 D1_b./dx.”~2 D1_c./dy.”2 D1_c./dy.”2]);
end

13) vFDFD {dP | dQ}.m

% Vector-Field Finite-Difference Frequency Domain
% Assembly of the Global Matrix
% Only diagonal anisotropies are taken into account

% | Erxx 0 o |
%D= | © Eryy o | E
% | o © Erzz |

%

% P |Ex| = betar2 |Ex|

% |Eyl |Ey|

%

function P = VvFDFDdP(lambda, mx, ny, Ux, Uy, Vx, Vy, Epr_xx, Epr_yy, Epr_zz, Epr_xy, Epr_yx)
nm = ny*mx; kO = 2*pi/lambda; I2 = speye(nm,nm); Kl_a = 1:1:nm;
Erx = sparse(Kl_a, K1_a, reshape(Epr_xx',1,nm));
Ery = sparse(Kl_a, K1_a, reshape(Epr_yy',1,nm));
Erz = sparse(Kl_a, K1_a, reshape(Epr_zz',1,nm));
% Erxy = sparse(K1l_a, K1_a, reshape(Epr_xy',1,nm));
% Eryx = sparse(Kl_a, K1_a, reshape(Epr_yx',1,nm));
Pxx = (-k@~-2)*Ux*(I2/Erz)*Vy*Vx*Uy ...
+ (k@"2*I2+Ux*(I2/Erz)*Vx)*(Erx+ko”-2*Vy*Uy);
Pxy = Ux*(I2/Erz)*Vy*(Ery+k0~-2*Vx*Ux) ...
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- kon-2*%(ke"2*I2+Ux*(I2/Erz)*Vx)*Vy*Ux;
(-k0~-2)*Uy*(I2/Erz)*Vx*Vy*Ux ...

+ (k@"2*I2+Uy*(I2/Erz)*Vy)*(Ery+ko”-2*Vx*Ux);
Uy*(I2/Erz)*Vx*(Erx+ko~-2*Vy*Uy) .

- kor-2*(kor2*I2+Uy* (IZ/EPZ)*Vy)*Vx*Uy,
cat(2,Pxx,Pxy);
cat(Z,Pyx,Pyy);
cat(1,P_1,P_2);

o o
< <
X <
1} 1}

% Vector-Field Finite-Difference Frequency Domain
Assembly of the Global Matrix
% Only diagonal anisotropies are taken into account

| Erxx 0 o |
D= | @ Eryy e | E
% | o @ Erzz |

% Q |Hx| = beta”2 |Hx|
6 [Hyl [Hy|

function Q = vFDFDdQ(lambda, mx, ny, Ux, Uy, Vx, Vy, Epr_xx, Epr_yy, Epr_zz, Epr_xy, Epr_yx)
nm = ny*mx; kO = 2*pi/lambda; I2 = speye(nm,nm); Ki_a = 1:1:nm;

Erx = sparse(Kl_a, K1_a, reshape(Epr_xx',1,nm));
Ery = sparse(Kl_a, K1_a, reshape(Epr_yy',1,nm));
Erz = sparse(Kl_a, K1_a, reshape(Epr_zz',1,nm));

% Erxy = sparse(Kl_a, K1_a, reshape(Epr_xy',1,nm));
% Eryx = sparse(K1l_a, K1_a, reshape(Epr_yx',1,nm));
Qxx = (-k0M-2)*Vx*Uy*Ux*(I2/Erz)*Vy ...

+ (Ery+ko~-2*Vx*Ux)*(ko~2*I2+Uy*(I2/Erz)*Vy);
Qxy = -(Ery+k0”-2*Vx*Ux)*Uy*(I2/Erz)*Vx ...

+ kO"-2*Vx*Uy* (k0r2*¥I2+Ux*(I2/Erz)*Vx);
Qyy = (-k0r-2)*Vy*Ux*Uy*(I2/Erz)*Vx ...

+ (Erx+ko~-2*Vy*Uy)*(ko~2*I2+Ux*(I2/Erz)*Vx);
Qyx = -(Erx+k@”-2*Vy*Uy)*Ux*(I2/Erz)*Vy ...

+ kOM-2*Vy*Ux* (k0r2*¥I2+Uy*(I2/Erz)*Vy);
Q_1 = cat(2,Qxx,Qxy);

= cat(2,Qyx,Qyy);

Q = cat(1,0.1,Q_2);

14) vFDFD {tP | tQ}.m

% Vector-Field Finite-Difference Frequency Domain
% Assembly of the Global Matrix
% Only diagonal and transverse anisotropies are taken into account

% | Erxx Erxy 0 |

% D = | Erxy Eryy o | E
% | o © Erzz |

%

% P |Ex| = beta®2 |Ex|

% |Eyl |Ey|

%

function P = VvFDFDtP(lambda, mx, ny, Ux, Uy, Vx, Vy, Epr_xx, Epr_yy, Epr_zz, Epr_xy, Epr_yx)
nm = ny*mx; kO = 2*pi/lambda; I2 = speye(nm,nm); Kl_a = 1:1:nm;

Erx = sparse(Kl_a, K1_a, reshape(Epr_xx',1,nm));
Ery = sparse(Kl_a, K1_a, reshape(Epr_yy',1,nm));
Erz = sparse(Kl_a, Ki_a, reshape(Epr_zz',l,nm));
Erxy = sparse(Kl_a, K1_a, reshape(Epr_xy',1,nm));
Eryx = sparse(K1l_a, K1_a, reshape(Epr_yx ,1 nm));

Pxx = (-k@"-2)*Ux*(I2/Erz)*Vy*Vx*Uy ...
+ (k@"2*I2+Ux*(I2/Erz)*Vx)*(Erx+kor-2*Vy*Uy) ...
+ Ux*(I2/Erz)*Vy*Eryx;

Pxy = Ux*(I2/Erz)*Vy*(Ery+k0~-2*Vx*Ux) ...
- kor-2*%(ke"r2*I2+Ux*(I2/Erz)*Vx)*Vy*Ux ...
+ k@"2*Erxy + Ux*(I2/Erz)*Vx*Erxy;

Pyy = (-ko~-2)*Uy*(I2/Erz)*Vx*Vy*Ux ...

+ (k@"2*I2+Uy*(I2/Erz)*Vy)*(Ery+ko”-2*Vx*Ux)
+ Uy*(I2/Erz)*VX*Erxy;
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Pyx = Uy*(I2/Erz)*Vx*(Erx+ko~-2*Vy*Uy) ...
- k@n-2% (k@ 2*I2+Uy* (I2/Erz)*Vy)*Vx*Uy ...
- k0"2*Eryx + Uy*(I2/Erz)*Vy*Eryx;
P_1 = cat(2,Pxx,Pxy);
P_2 = cat(2,Pyx,Pyy);
P = cat(1,P_1,P_2);
end

% Vector-Field Finite-Difference Frequency Domain
% Assembly of the Global Matrix
% Only diagonal and transverse anisotropies are taken into account

% | Erxx Erxy 0 |
%D = | Erxy Eryy @ | E
% | o @ Erzz |

% Q |Hx| = beta”2 |Hx|
6 [Hyl [Hy|

function Q = vFDFDtQ(lambda, mx, ny, Ux, Uy, Vx, Vy, Epr_xx, Epr_yy, Epr_zz, Epr_xy, Epr_yx)
nm = ny*mx; kO = 2*pi/lambda; I2 = speye(nm,nm); Ki_a = 1:1:nm;

Erx = sparse(Kl_a, K1_a, reshape(Epr_xx',1,nm));
Ery = sparse(Kl_a, K1_a, reshape(Epr_yy',1,nm));
Erz = sparse(Kl_a, K1_a, reshape(Epr_zz',1,nm));
Erxy = sparse(Kl_a, K1_a, reshape(Epr_xy',1,nm));
Eryx = sparse(Kl_a, K1_a, reshape(Epr_yx',1,nm));

Qxx = (-kO~-2)*Vx*Uy*Ux*(I2/Erz)*Vy ...
+ (Ery+ko”-2*Vx*Ux)*(ko"2*I2+Uy*(I2/Erz)*Vy) ...
+ Eryx*Ux*(I2/Erz)*Vy;
Qxy = -(Ery+k@”-2*Vx*Ux)*Uy*(I2/Erz)*Vx ...
+ kO~ -2*Vx*Uy* (k@A 2*¥I2+Ux* (I2/Erz)*Vx) ...
- k@"2*Eryx - Eryx*Ux*(I2/Erz)*Vx;

Qyy = (-ko~-2)*Vy*Ux*Uy*(I2/Erz)*Vx ...
+ (Erx+ko~-2*Vy*Uy)*(ko"2*I2+Ux*(I2/Erz)*Vx) ...
+ Erxy*Uy*(I2/Erz)*Vx;

Qyx = -(Erx+ke”-2*Vy*Uy)*Ux*(I2/Erz)*Vy ...
+ kO~-2*Vy*Ux* (kor2*¥I2+Uy* (I2/Erz)*Vy) ...
- k@"2*Erxy - Erxy*Uy*(I2/Erz)*Vy;

Q1 = cat(2,Qxx,Qxy);

Q_2 = cat(2,Qyx,Qyy);

Q = cat(1,Q.1,Q_2);

end
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Appendix C Sellmeier Equation for Fused Silica

Appendix C

http://cvimellesgriot.com/products/Documents/Catalog/Dispersion Equations.pdf

Appendix & Indices
| fsh About ur Build-to-Print and Custom Capabilities

Dispersion Equations

a
=
g Dispersion Equations for Optical Materials
= Typically either a Sellmeieror Laument series equation & used to describe gless dispersion.
The Sellmeier saries ecuation is:
. B2 B B
=+ — +— +—
WoCp M0 M-y
wheme the wavelength, &, is expressad in um.
Dispersion Equation Constants - Sellmeier series equation
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Appendix D Computer Specifications

Appendix D
Computer 1
CPU Intel® Core™ i5 M460 @ 2.53GHz
RAM 4.00 GB (3.86 GB Available)
oS Windows 7 Home Premium (64-bit) with Service Pack 1

MATLAB 7.10.0 (R2010a)  <Student Version>

EDU>> memory

Maximum possible array: 2046 MB (2.146e+009 bytes) *
Memory available for all arrays: 3494 MB (3.664e+009 bytes) **
Memory used by MATLAB: 267 MB (2.805e+008 bytes)
Physical Memory (RAM): 3958 MB (4.150e+009 bytes)

* Limited by contiguous virtual address space available.

**  Limited by virtual address space available.

Computer 2
CPU Intel® Core™ i7 950 @ 3.07GHz
RAM 24.0 GB
0sS Windows 7 Professional (64-bit)

MATLAB 7.12.0.0635 (R2011a)

EDU>> memory

Maximum possible array: 59142 MB (6.201e+010 bytes) *
Memory available for all arrays: 59142 MB (6.201e+010 bytes) *
Memory used by MATLAB: 436 MB (4.570e+008 bytes)
Physical Memory (RAM): 24574 MB (2.577e+010 bytes)

*  Limited by System Memory (physical + swap file) available.

For Computer 1, when 48 eigenvalues are set to be sought, the maximum number of grid
points allowed for vector-field simulation is approximately 350-by-350, limited mainly by
the contiguous virtual address space available (32-bit allocation). For Computer 2, under
the same setting, the maximum number is approximately 1200-by-1200, limited by

system memory.
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Appendix E Derivation of the Global Matrix for the Vector-Field FDFD
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